Skip to main content
Log in

A Multi-Electrode System for the Implementation of Solid-State Quantum Devices Based on a Disordered System of Dopant Atoms in Silicon

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this work, we present a nanoscale solid state structure, which is a 3D-array of tunnel-coupled arsenic dopants in silicon with a system of metallic electrodes leading to them. The structures of eight metal electrodes were fabricated on the inhomogeneously in depth doped with arsenic silicon surface, four of which converge to a region 50 nm in diameter, and four to a region of 200 nm. After removal of a thin highly conducting upper silicon layer, single-electron transport in an array (reservoir) of arsenic impurity atoms located between the electrodes is demonstrated. The Coulomb blockade was \({\sim}100\) mV at a temperature of 4.2 K. The proposed structure can be used as a reservoir neural network, where single impurity atoms act as neurons, and electrodes will act as input and output terminals of the device, and also be used to configure the neural network. The operating temperature of such devices can be significantly increased due to the relatively small effective size of impurity arsenic atoms in silicon (3–5 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. B. E. Kane, Nature (London, U.K.) 393, 133 (1998).

    Article  ADS  Google Scholar 

  2. J. J. Pla, K. Y. Tan, J. P. Dehollain, et al., Nature (London, U.K.) 489, 541 (2012).

    Article  ADS  Google Scholar 

  3. M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012).

    Article  ADS  Google Scholar 

  4. M. Veldhorst, C. H. Yang, J. C. C. Hwang, et al., Nature (London, U.K.) 526, 410 (2015).

    Article  ADS  Google Scholar 

  5. G. Yamahata, K. Nishiguchi, and A. Fujiwara, Nat. Commun. 5, 5038 (2014).

    Article  ADS  Google Scholar 

  6. G. C. Tettamanzi, R. Wacquez, and S. Rogge, New J. Phys. 16, 063036 (2014).

    Article  ADS  Google Scholar 

  7. H. Sellier, G. P. Lansbergen, J. Caro, et al., Phys. Rev. Lett. 97, 206805 (2006).

    Article  ADS  Google Scholar 

  8. G. P. Lansbergen, R. Rahman, C. J. Wellard, et al., Nat. Phys. 4, 656 (2008).

    Article  Google Scholar 

  9. M. Pierre, R. Wacquez, X. Jehl, et al., Nat. Nanotechnol. 5, 133 (2010).

    Article  ADS  Google Scholar 

  10. K. Y. Tan, K. W. Chan, M. Mottonen, et al., Nano Lett. 10, 11 (2010).

    Article  ADS  Google Scholar 

  11. E. Prati, M. De Michielis, M. Belli, et al., Nat. Nanotechnol. 23, 215204 (2012).

    Article  ADS  Google Scholar 

  12. D. Moraru, A. Samanta, T. Mizuno, et al., Nano Lett. 4, 6219 (2014).

    Google Scholar 

  13. J. A. Miwa, J. A. Mol, J. Salfi, et al., Appl. Phys. Lett. 103, 043106 (2013).

    Article  ADS  Google Scholar 

  14. B. Voisin, J. Salfi, J. Bocquel, et al., J. Phys.: Condens. Matter 27, 154203 (2015).

    ADS  Google Scholar 

  15. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, et al., Ultramicroscopy 179, 33 (2017).

    Article  Google Scholar 

  16. D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, et al., J. Appl. Phys. 123, 054503 (2018).

    Article  ADS  Google Scholar 

  17. E. Prati, R. Latempa, and M. Fanciulli, Phys. Rev. B 80, 165331 (2009).

    Article  ADS  Google Scholar 

  18. M. Gasseller, M. DeNinno, R. Loo, et al., Nano Lett. 11, 5208 (2011).

    Article  ADS  Google Scholar 

  19. S. J. Hile, M. G. House, E. Peretz, et al., Appl. Phys. Lett. 107, 093504 (2015).

    Article  ADS  Google Scholar 

  20. G. Lovat, B. Choi, D. W. Paley, et al., Nat. Nanotechnol. 12, 1050 (2017).

    Article  ADS  Google Scholar 

  21. S. J. Shin, J. J. Lee, H. J. Kang, et al., Nano Lett. 11, 1591 (2011).

    Article  ADS  Google Scholar 

  22. C. Gallicchio, A. Micheli, and L. Pedrelli, Neurocomputing 268, 87 (2017).

    Article  Google Scholar 

  23. H. Jaeger, German Natl. Res. Center Inform. Technol. GMD Tech. Rep. 148 (34), 13 (2001).

    Google Scholar 

  24. S. K. Bose, C. P.Lawrence, Z. Liu, et al., Nat. Nanotechnol. 10, 1048 (2015).

    Article  ADS  Google Scholar 

  25. T. Chen, J. van Gelder, B. van de Ven, et al., Nature (London, U.K.) 577, 341 (2020).

    Article  ADS  Google Scholar 

  26. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, et al., Nanotechnology 28, 225304 (2017).

    Article  ADS  Google Scholar 

  27. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, E. S. Soldatov, A. S. Trifonov, V. A. Krupenin, and O. V. Snigirev, Mosc. Univ. Phys. Bull. 72, 474 (2017).

    Article  ADS  Google Scholar 

  28. V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, et al., Nanoscale 9, 613 (2017).

    Article  Google Scholar 

  29. D. E. Presnov, S. A. Dagesyan, I. V. Bozhev, V. V. Shorokhov, A. S. Trifonov, A. A. Shemukhin, I. V. Sapkov, I. G. Prokhorova, O. V. Snigirev, and V. A. Krupenin, Mosc. Univ. Phys. Bull. 74, 165 (2019).

    Article  ADS  Google Scholar 

  30. S. A. Dagesyan, S. Yu. Ryzhenkova, D. E. Presnov, et al., Proc. SPIE 11022, 110221P (2019).

    Google Scholar 

  31. U. Geigenmuller and G. Schon, Europhys. Lett. 10 (8), 765.

  32. V. A. Krupenin, V. O. Zalunin, and A. B. Zorin, Microelectron. Eng. 81, 217 (2005).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-00072. The first and the second authors express their special gratitude to the Russian Foundation for Basic Research (project no. 18-37-00414). Equipment of the Lithography and Microscopy Center of the Moscow State University was used for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Dagesyan or V. A. Krupenin.

Additional information

Translated by A. Muravnik

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagesyan, S.A., Ryzhenkova, S.Y., Sapkov, I.V. et al. A Multi-Electrode System for the Implementation of Solid-State Quantum Devices Based on a Disordered System of Dopant Atoms in Silicon. Moscow Univ. Phys. 75, 331–335 (2020). https://doi.org/10.3103/S0027134920040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920040062

Keywords:

Navigation