Skip to main content
Log in

The Effect of Gossypol on the Structure of Nucleosomes

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract—

Gossypol is a highly active compound with antiviral, antioxidant, antimicrobial, antimalarial, and antitumor properties. It is known that the antitumor effect of gossypol is associated with genotoxicity; however, gossypol interaction with chromatin was not studied. In this work, using the method of single particle microscopy based on the Förster resonant energy transfer, it was found that gossypol at concentrations of 10 μM and higher causes significant structural changes in the conformation of nucleosomal DNA on the histone octamer. These changes affect at least 35 bp of nucleosomal DNA, increase the distance between neighboring superhelical gyres of nucleosomal DNA in this region to 9 nm or more, and are caused by unwrapping of nucleosomal DNA. The presence of linker DNA regions slightly increases the resistance of nucleosomes to the gossypol action compared with core nucleosomes. At the concentration of 30 μM and higher, gossypol completely disrupts the structure of nucleosomes, causing dissociation of histones from DNA. The obtained data indicate that gossypol genotoxicity observed in vivo could be associated with a direct effect of gossypol on chromatin, leading to disruption of the nucleosome structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Tian, X., Fang, X., Huang, J., Wang, Q.J., Mao, Y.B., and Chen, X.Y., A gossypol biosynthetic intermediate disturbs plant defence response, Philos. Trans. R Soc. London B Biol. Sci., 2019, vol. 374, no. 1767.

  2. Jia, L., Coward, L.C., Kerstner-Wood, C.D., Cork, R.L., Gorman, G.S., Noker, P.E., Kitad, S., Pellecchia, M., and Reed, J.C., Comparison of pharmacokinetic and metabolic profiling among gossypol, apogossypol and apogossypolhexaacetate, Cancer Chemother. Pharmacol., 2008, vol. 61, no. 1, pp. 63–73.

    Article  CAS  PubMed  Google Scholar 

  3. Benvenuto, M., Mattera, R., Masuelli, L., Taffera, G., Andracchio, O., Tresoldi, I., Lido, P., Giganti, M.G., Godos, J., Modesti, A., and Bei, R., (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/C mice, Int. J. Food Sci. Nutr., 2017, vol. 68, no. 3, pp. 298–312.

    Article  CAS  PubMed  Google Scholar 

  4. Lin, J., Wu, Y., Yang, D., and Zhao, Y., Induction of apoptosis and antitumor effects of a small molecule inhibitor of Bcl-2 and Bcl-xl, gossypol acetate, in multiple myeloma in vitro and in vivo, Oncol. Rep., 2013, vol. 30, no. 2, pp. 731–738.

    Article  CAS  PubMed  Google Scholar 

  5. Meng, Y., Tang, W., Dai, Y., Wu, X.M., Liu Ji, Q., Ji, M., Pienta, K., Lawrence, T., and Xu, L., Natural BH3 mimetic (–)-gossypol chemosensitizes human prostate cancer via Bcl-xl inhibition accompanied by increase of Puma and Noxa, Mol. Cancer Ther., 2008, vol. 7, no. 7, pp. 2192–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lian, J., Karnak, D., and Xu, L., The Bcl-2-Beclin 1 interaction in (–)-gossypol-induced autophagy versus apoptosis in prostate cancer cells, Autophagy, 2010, vol. 6, no. 8, pp. 1201–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y. and Rao, P.N., Effect of gossypol on DNA synthesis and cell cycle progression of mammalian cells in vitro, Cancer Res., 1984, vol. 44, no. 1, pp. 35–38.

    CAS  PubMed  Google Scholar 

  8. Na, Z., Peng, B., Ng, S., Pan, S., Lee, J.S., Shen, H.M., and Yao, S.Q., A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain, Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 8, pp. 2515–2519.

    Article  CAS  Google Scholar 

  9. Rao, M.V. and Narechania, M.B., The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin, Drug Chem. Toxicol., 2016, vol. 39, no. 4, pp. 357–361.

    Article  CAS  PubMed  Google Scholar 

  10. Luz, V.B., Gadelha, I.C.N., Cordeiro, L.A.V., Melo, M.M., and Soto-Blanco, B., In vitro study of gossypol’s ovarian toxicity to rodents and goats, Toxicon, 2018, vol. 145, pp. 56–60.

    Article  CAS  PubMed  Google Scholar 

  11. Belotserkovskaya, R., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and Reinberg, D., FACT facilitates transcription-dependent nucleosome alteration, Science, 2003, vol. 301, no. 5636, pp. 1090–1093.

    Article  CAS  PubMed  Google Scholar 

  12. Valieva, M.E., Armeev, G.A., Kudryashova, K.S., Gerasimova, N.S., Shaytan, A.K., Kulaeva, O.I., Mccullough, L.L., Formosa, T., Georgiev, P.G., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Large-scale ATP-independent nucleosome unfolding by a histone chaperone, Nat. Struct. Mol. Biol., 2016, vol. 23, no. 12, pp. 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, H.W., Kulaeva, O.I., Shaytan, A.K., Kiba-nov, M., Kuznedelov, K., Severinov, K.V., Kirpichnikov, M.P., Clark, D.J., and Studitsky, V.M., Analysis of the mechanism of nucleosome survival during transcription, Nucleic Acid Res., 2014, vol. 42, no. 3, pp. 1619–1627.

    Article  CAS  PubMed  Google Scholar 

  14. Nilov, D., Maluchenko, N., Kurgina, T., Pushkarev, S., Lys, A., Kutuzov, M., Gerasimova, N., Feofanov, A.V., Svedas, V., Lavrik, O., and Studitsky, V.M., Molecular mechanisms of PARP-1 inhibitor 7-methylguanine, Int. J. Mol. Sci., 2020, vol. 21, no. 6.

  15. Mccullough, L.L., Connell, Z., Xin, H., Studitsky, V.M., Feofanov, A.V., Valieva, M.E., and Formosa, T., Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization, J. Biol. Chem., 2018, vol. 293, no. 16, pp. 6121–6133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sultanov, D.C., Gerasimova, N.S., Kudryashova, K.S., Maluchenko, N.V., Kotova, E.Y., Langelier, M.F., Pascal, J.M., Kirpichnikov, M.P., Feofanov, A.V., and Studitsky, V.M., Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy, AIMS Genet., 2017, vol. 4, no. 1, pp. 21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang, H.W., Valieva, M.E., Safina, A., Chereji, R.V., Wang, J., Kulaeva, O.I., Morozov, A.V., Kirpichnikov, M.P., Feofanov, A.V., Gurova, K.V., and Studitsky, V.M., Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins, Sci. Adv., 2018, vol. 4, no. 11.

  18. Maluchenko, N.V., Sultanov, D.S., Kotova, E.Y., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Histone tails promote PARP1-dependent structural rearrangements in nucleosomes, Dokl. Biochem. Biophys., 2019, vol. 489, no. 1, pp. 377–379.

    Article  CAS  PubMed  Google Scholar 

  19. Morozov, A.V., Fortney, K., Gaykalov, D.A., Studitsky, V.M., Widom, J., and Siggia, E.D., Using DNA mechanics to predict in vitro nucleosome positions and formation energies, Nucleic Acid Res., 2009, vol. 37, no. 14, pp. 4707–4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kudryashova, K.S., Chertkov, O.V., Nikitin, D.V., Pestov, N.A., Kulaeva, O.I., Efremenko, A.V., Solonin, A.S., Kirpichnikov, M.P., Studitsky, V.M., and Feofanov, A.V., Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET, Methods Mol. Biol., 2015, vol. 1288, pp. 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulaeva, O.I. and Studitsky, V.M., Preparation and analysis of positioned mononucleosomes, in Chromatin Protocols. Methods in Molecular Biology, Chellappan, S., Eds., New York: Humana Press, 2015, vol. 1288, pp. 15–26.

    Google Scholar 

  22. Zaidi, R. and Hadi, S.M., Interaction of gossypol with DNA, Toxicol. In Vitro, 1992, vol. 6, no. 1, pp. 71–76.

    Article  CAS  PubMed  Google Scholar 

  23. Zaidi, R. and Hadi, S.M., Complexes involving gossypol, DNA and Cu(II), Biochem. Int., 1992, vol. 28, no. 6, pp. 1135–1143.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-54-33045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Malyuchenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving humans as subjects.

Additional information

Translated by D. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyuchenko, N.V., Koshkina, D.O., Korovina, A.N. et al. The Effect of Gossypol on the Structure of Nucleosomes. Moscow Univ. Biol.Sci. Bull. 75, 142–146 (2020). https://doi.org/10.3103/S0096392520030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392520030050

Keywords:

Navigation