Skip to main content
Log in

An MHD Model of an Incompressible Polymeric Fluid: Linear Instability of a Steady State

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study linear stability of a steady state for a generalization of the basic rheological Pokrovskii–Vinogradov model which describes the flows of melts and solutions of an incompressible viscoelastic polymeric medium in the nonisothermal case under the influence of a magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: For some values of the conduction current which is given on the electrodes (i.e. at the channel boundaries), there exist solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. V. Pyshnograi, V. N. Pokrovskii, Yu. G. Yanovskii, I. F. Obraztsov, and Yu. N. Karnet, “Constitutive Equation of Nonlinear Viscoelastic (Polymer) Media in Nought Approximation by Parameter of Molecular Theory and Conclusions for Shear and Extension,” Dokl. Akad. Nauk 339 (5), 612–615 (1994).

    Google Scholar 

  2. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics (Springer, London, 2010).

    Book  Google Scholar 

  3. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymeric Systems (Izd. Altai. Gos. Ped. Akad., Barnaul, 2012) [in Russian].

    Google Scholar 

  4. K. B. Koshelev, G. V. Pyshnograi, A. E. Kuznetsov, and M. Yu. Tolstykh, “A Temperature Dependence of the Hydrodynamic Characteristics of a Polymeric Melt Flow in a Convergent Channel,” Mekhanika Kompoz. Materialov i Konstruktsii 22 (2), 175–191 (2016).

    Google Scholar 

  5. A. M. Blokhin, A. V. Egitov, and D. L. Tkachev, “Linear Instability of Solutions in a Mathematical Model Describing Polymer Flows in an Infinite Channel,” Zh. Vychisl. Mat. Mat. Fiz. 55 (5), 850–875 (2015) [Comput. Math. Math. Phys. 55 (5), 848–873 (2015)].

    Article  MathSciNet  Google Scholar 

  6. A. M. Blokhin, D. L. Tkachev, and A. V. Egitov, “Asymptotics of the Spectrum of a Linearized Problem of the Stability of a Stationary Flow of an Incompressible Polymer Fluid with a Space Charge,” Zh. Vychisl. Mat. Mat. Fiz. 58 (1), 108–123 (2018). [Comput. Math. Math. Phys. 58 (1), 102–117 (2018)].

    Article  MathSciNet  Google Scholar 

  7. A. Blokhin, D. Tkachev, and A. Yegitov, “Spectral Asymptotics of a Linearized Problem for an Incompressible Weakly Conducting Polymeric Fluid,” Z. Angrew. Math. Mech. 98 (4), 589–601 (2018).

    Article  MathSciNet  Google Scholar 

  8. A. Blokhin and D. Tkachev, “Linear Asymptotic Instability of a Stationary Flow of a Polymeric Medium in a Plane Channel in the Case of Periodic Perturbations,” Sibir. Zh. Indust. Mat. 17 (3), 13–25 (2014) [J. Appl. Ind. Math.8 (4), 467–478 (2014)].

    Article  MathSciNet  Google Scholar 

  9. A. Blokhin and D. Tkachev, “Spectral Asymptotics of a Linearized Problem about Flow of an Incompressible Polymeric Fluid. Base Flow Is an Analog of a Poiseuille Flow,” AIP Conf. Proc. 2017 (030028), 1–7 (2018).

    Google Scholar 

  10. A. M. Blokhin and D. L. Tkachev, “Analogue of the Poiseuille Flow for Incompressible Polymeric Fluid with Volume Charge. Asymptotics of the Linearized Problem Spectrum,” IOP Conf. Series: J. Physics: Conf. Ser. 894 (012096), 1–6 (2017).

    Google Scholar 

  11. A. M. Blokhin, D. L. Tkachev, and A. V. Egitov, “An Asymptotic Formula for the Spectrum of a Linear Problem Describing Periodic Flows of a Polymeric Fluid in an Infinite Plane Channel,” Prikl. Mat. i Tekhn. Fiz. 59 (6), 39–51 (2018).

    Google Scholar 

  12. E. Grenier, Y. Guo, and T. T. Nguyen, “Spectral Instability of Characteristic Boundary Layer Flows,” Duke Math. J. 165 (16), 3085–3146 (2016).

    Article  MathSciNet  Google Scholar 

  13. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970; World Scientific, 1997).

  14. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Stewartson Pergamon Press, Oxford, 1966; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  15. A. B. Vatazhin, G. A. Lyubimov, and S. A. Regirer, Magnetic Hydrodynamical Flows in Channels (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  16. I. Bai-Shi, Introduction to Theory of Compressible Fluid Flow (Izd. Inostrannaya Literatura, Moscow, 1962) [in Russian].

    Google Scholar 

  17. A. M. Blokhin and R. E. Semenko, “Steady Hydrodynamical Flows of Nonisothermic Incompressible Polymeric Fluid in a Flat Channel,” Vestnik Yuzhno-Ural. Gos. Univ. Ser. Mat. Model. Program. 11 (4), 41–54 (2018).

    MATH  Google Scholar 

  18. Y. Shibata, “On the R-Boundedness for the Two Phase Problem with Phase Transition: Compressible–Incompressible Model Problem,” Funkcialay Ekvacioj. 59, 243–287 (2016).

    Article  MathSciNet  Google Scholar 

  19. A. M. Blokhin and D. L. Tkachev, “Stability of Poiseuille-Type Flows for an MHD Model of an Incompressible Polymeric Fluid,” J. Hyperbolic Diff. Equations. 4 (4), 1–25 (2019).

    MathSciNet  MATH  Google Scholar 

  20. A. M. Blokhin, D. L. Tkachev, and A. V. Egitov, “Stability of the Poiseuille-Type Models for a MHD Model of an Incompressible Polymeric Fluid,” Prikl. Mat. Mekh. 83 (5–6), 779–789 (2019).

    Google Scholar 

  21. A. M. Blokhin and D. L. Tkachev, “Stability of the Poiseuille-Type Flow for a MHD Model of an Incompressible Polymeric Fluid,” European J. Mech. B: Fluids 80, 112–121 (2020).

    Article  MathSciNet  Google Scholar 

  22. A. I. Akhiezer and I. A. Akhiezer, Electromagnetism and Electromagnetic Waves (Vysshaya Shkola, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  23. K. Nordling and J. Österman, Physics Handbook for Science and Engineering (Studentlitteratur, Lund, 1999; BKhV-Peterburg, St. Petersburg, 2011).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshits, Electrodynamic of Continuous Media (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  25. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. V. Yegitov for help in designing the manuscript.

Funding

The authors were supported by the Russian Foundation for Basic Research (project no. 19–01–00261) and the Siberian Branch of the Russian Academy of Sciences (the Program of Basic Research No. I.1.5, project 0314–2019–0013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Blokhin, A. S. Rudometova or D. L. Tkachev.

Additional information

Translated by G.A. Chumakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Rudometova, A.S. & Tkachev, D.L. An MHD Model of an Incompressible Polymeric Fluid: Linear Instability of a Steady State. J. Appl. Ind. Math. 14, 430–442 (2020). https://doi.org/10.1134/S1990478920030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920030035

Keywords

Navigation