Skip to main content
Log in

On a Modification of the Rusanov Solver for the Equations of Special Relativistic Magnetic Hydrodynamics

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We describe the implementation of a modification of the Rusanov solver for the equations of special relativistic magnetic hydrodynamics. The particularity of the relativistic hydrodynamics equations, including a magnetic field, is a natural constraint on the admissible wave propagation velocity, which allows us to construct a fairly simple modification of the Rusanov solver using the maximum wave propagation velocity equal to the speed of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. P. Wang, T. Abel, and W. Zhang, “Relativistic Hydrodynamic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement,” Astrophys. J. Suppl. Ser.176, 467–483 (2008).

    Article  Google Scholar 

  2. H.-Y. Karen Yang and C. S. Reynolds, “How AGN Jets Heat the Intracluster Medium: Insights from Hydrodynamic Simulations,” Astrophys. J. 829, Article No 90 (2016).

  3. S. Khoperskov, Yu. Venichenko, S. Khrapov, and E. Vasiliev, “High Performance Computing of Magnetized Galactic Disks,” Supercomputing Frontiers and Innovations 5, 103–106 (2018).

    Google Scholar 

  4. V. Bosch-Ramon and D. Khangulyan, “Understanding the Very-High-Energy Emission from Microquasars,” Internat. J. Modern Physics D, 18 (3), 347–387 (2009).

    Article  Google Scholar 

  5. C. M. Fromm, M. Perucho, P. Mimica, and E. Ros, “Spectral Evolution of Flaring Blazars from Numerical Simulations,” Astronomy and Astrophysics 588, Article No. A101 (2016).

  6. A. Janiuk, K. Sapountzis, J. Mortier, and I. Janiuk, “Numerical Simulations of Black Hole Accretion Flows,” Supercomputing Frontiers and Innovations 5, 86–102 (2018).

    Google Scholar 

  7. H. Nagakura, H. Ito, K. Kiuchi, S. Yamada, “Jet Propagations, Breakouts, and Photospheric Emissions in Collapsing Massive Progenitors of Long-Duration Gamma-Ray Bursts,” Astrophys. J. 731, Article No. 80 (2011).

  8. P. Hughes, M. Miller, and G. Duncan, “Three-Dimensional Hydrodynamic Simulations of Relativistic Extragalactic Jets,” Astrophys. J. 572, 713–728 (2002).

    Article  Google Scholar 

  9. H. Nagakura, K. Sumiyoshi, and S. Yamada, “Three-Dimensional Boltzmann Hydro Code for Core Collapse in Massive Stars. I. Special Relativistic Treatments,” Astrophys. J.Suppl. Ser. 214, Article No. 16 (2014).

  10. E. O’Connor and C. Ott, “A New Open-Source Code for Spherically Symmetric Stellar Collapse to Neutron Stars and Black Holes,” Classical and Quantum Gravity27, Article No. 114103 (2010).

  11. S. Komissarov, “Electrodynamics of Black Hole Magnetospheres,” Monthly Notices Royal Astronom. Soc. 350 (2), 427–448 (2004).

    Article  Google Scholar 

  12. S. Komissarov, “Observations of the Blandford–Znajek Process and the Magnetohydrodynamic Penrose Process in Computer Simulations of Black Hole Magnetospheres,” Monthly Notices Royal Astronom. Soc. 359 (3), 801–808 (2005).

    Article  Google Scholar 

  13. C. Palenzuela, T. Garrett, L. Lehner, and S. Liebling, “Magnetospheres of Black Hole Systems in Force-Free Plasma,” Physics Review D, 82, Article No. 044045 (2010).

  14. C. Palenzuela, C. Bona, L. Lehner, and O. Reula, “Robustness of the Blandford–Znajek Mechanism,” Classical and Quantum Gravity 28, Article No. 4007 (2011).

  15. C. Palenzuela, L. Lehner, and S. Liebling, “Dual Jets from Binary Black Holes,” Science 329, 927–930 (2010).

    Article  Google Scholar 

  16. S. Komissarov, “Simulations of the Axisymmetric Magnetospheres of Neutron Stars,” Monthly Notices Royal Astronom. Soc. 367 (1), 19–31 (2006).

    Article  Google Scholar 

  17. M. D. Duez, Y. T. Liu, S. L. Shapiro, M. Shibata, and B.C. Stephens, “Collapse of Magnetized Hypermassive Neutron Stars in General Relativity,” Phys. Review Lett.96, Article No. 031101 (2006).

  18. M. D. Duez , Y. T. Liu, S. L. Shapiro, M. Shibata, and B. C. Stephens, “Evolution of Magnetized, Differentially Rotating Neutron Stars: Simulations in Full General Relativity,” Phys. Review D, 73, Article No. 104015 (2006).

  19. M. Shibata, M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens, “Magnetized Hypermassive Neutron-Star Collapse: A Central Engine for Short Gamma-Ray Bursts,” Phys. Review Lett. 96, Article No. 031102 (2006).

  20. T. Marsh, et al., “A Radio-Pulsing White Dwarf Binary Star,” Nature537, 374–377 (2016).

    Article  Google Scholar 

  21. M. Coleman Miller and N. Yunes, “The New Frontier of Gravitational Waves,” Nature 568, 469–476 (2019).

    Article  Google Scholar 

  22. F. Lora-Clavijo, A. Cruz-Osorio, and F. Guzman, “CAFE: A New Relativistic MHD Code,” Astrophys. J. Suppl. Ser. 218 (2), Article No. 24 (2015).

  23. J. Stone, et al., “Athena: A New Code for Astrophysical MHD,” Astrophys. J. Suppl. Ser. 178, 137–177 (2008).

    Article  Google Scholar 

  24. Z. Etienne, M. Wan, M. Babiuc, S. McWilliams, and A. Choudhary, “GiRaFFE: An Open-Source General Relativistic Force-Free Electrodynamics Code,” Classical and Quantum Gravity 34, Article No. 215001 (2017).

  25. Z. Etienne, V. Paschalidis, R. Haas, P. Mosta, and S. Shapiro, “IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes,” Classical and Quantum Gravity 32, Article No. 175009 (2015).

  26. M. Rempel, “Extension of the MURAM Radiative MHD Code for Coronal Simulations,” Astrophys. J. 834, Article No. 10 (2017).

  27. B. Giacomazzo and L. Rezzolla, “WhiskyMHD: A New Numerical Code for General Relativistic Magnetohydrodynamics,” Classical and Quantum Gravity 24, Article No. S235 (2007).

  28. V. V. Rusanov, “The Calculation of the Interaction of Nonstationary Shock Waves with Barriers,” Comput. Math. Math. Phys. 1, 267–279 (1961).

    Google Scholar 

  29. S. Chen, C. Yan, and X. Xiang, “Effective Low-Mach Number Improvement for Upwind Schemes,” Computers and Math. with Appl. 75 (10), 3737–3755 (2018).

    Article  MathSciNet  Google Scholar 

  30. T. Ohwada, Y. Shibata, T. Kato, and T. Nakamura, “A Simple, Robust and Efficient High-Order Accurate Shock-Capturing Scheme for Compressible Flows: Towards Minimalism,” J. Comput. Phys. 362, 131–162 (2018).

    Article  MathSciNet  Google Scholar 

  31. M. Edwards, “The Dominant Wave-Capturing Flux: A Finite-Volume Scheme Without Decomposition for Systems of Hyperbolic Conservation Laws,” J. Comput. Phys.218 (1), 275–294 (2006).

    Article  MathSciNet  Google Scholar 

  32. I. Kulikov, I. Chernykh, and A. Tutukov, “A New Hydrodynamic Code with Explicit Vectorization Instructions Optimizations That is Dedicated to the Numerical Simulation of Astrophysical Gas Flow. I. Numerical Method, Tests, and Model Problems,” Astrophys. J. Suppl. Ser. 243, Article No. 4 (2019).

  33. I. M. Kulikov, I. G. Chernykh, and A. V. Tutukov, “A New Parallel Intel Xeon Phi Hydrodynamics Code for Massively Parallel Supercomputers ,” Lobachevskii J. Math.39 (9), 1207–1216 (2018).

    Article  MathSciNet  Google Scholar 

  34. Z. Huang, G. Toth, B. der Holst, Y. Chen, and T. Gombosi, “A Six-Moment Multi-Fluid Plasma Model,” J. Comput. Phys. 387, 134–153 (2019).

    Article  MathSciNet  Google Scholar 

  35. F. Coquel, J.-M. Herard, and K. Saleh, “A Positive and Entropy-Satisfying Finite Volume Scheme for the Baer–Nunziato Model,” J. Comput. Phys. 330, 401–435 (2017).

    Article  MathSciNet  Google Scholar 

  36. M. H. Abbasi, S. Naderi Lordejani, N. Velmurugan, et al., “A Godunov-Type Scheme for the Drift Flux Model with Variable Cross Section,” J. Petroleum Science and Engineering. 179, 796–813 (2019).

    Article  Google Scholar 

  37. A. Alvarez Laguna, N. Ozak, A. Lani, H. Deconinck, and S. Poedts, “Fully-Implicit Finite Volume Method for the Ideal Two-Fluid Plasma Model,” Computer Physics Communications 231, 31–44 (2018).

    Article  MathSciNet  Google Scholar 

  38. X. Xu and X.-L. Deng, “An Improved Weakly Compressible SPH Method for Simulating Free Surface Flows of Viscous and Viscoelastic Fluids,” Computer Physics Communications 201, 43–62 (2016).

    Article  MathSciNet  Google Scholar 

  39. X. Xu and Yu. Peng, “Modeling and Simulation of Injection Molding Process of Polymer Melt by a Robust SPH Method,” Appl. Math. Model. 48, 384–409 (2017).

    Article  MathSciNet  Google Scholar 

  40. T.-R. Teschner, L. Konozsy, and K. Jenkins, “A Generalised and Low-Dissipative Multi-Directional Characteristics-Based Scheme with Inclusion of the Local Riemann Problem Investigating Incompressible Flows without Free-Surfaces,” Computer Physics Communications 239, 283–310 (2019).

    Article  Google Scholar 

  41. H. Nishikawa and K. Kitamura, “Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann Solvers,” J. Comput. Phys. 227 (4), 2560–2581 (2008).

    Article  MathSciNet  Google Scholar 

  42. M. Dumbser and D. Balsara, “A New Efficient Formulation of the HLLEM Riemann Solver for General Conservative and Nonconservative Hyperbolic Systems,” J. Comput. Phys. 304, 275–319 (2016).

    Article  MathSciNet  Google Scholar 

  43. D. Balsara, J. Li, and O. Montecino, “An Efficient, Second Order Accurate, Universal Generalized Riemann Problem Solver Based on the HLLI Riemann Solver,” J. Comput. Phys. 375, 1238–1269 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The author was supported by the Russian Science Foundation (project no. 18–11–00044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Kulikov.

Additional information

Translated by L.B. Vertgeim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, I.M. On a Modification of the Rusanov Solver for the Equations of Special Relativistic Magnetic Hydrodynamics. J. Appl. Ind. Math. 14, 524–531 (2020). https://doi.org/10.1134/S1990478920030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478920030114

Keywords

Navigation