Skip to main content
Log in

Rheological Behavior of a VT23 Alloy during Deformation in a Wide Temperature Range

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Upsetting tests of a two-phase VT23 titanium alloy are carried out in the temperature range 700–1200°C. The phase composition of the alloy after deformation on a plastometer is studied by X-ray diffraction. Experimental plastic flow curves are plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. I. Potapov, S. V. Gladkovskii, E. A. Kokovikhin, D. R. Salikhyanov, and D. A. Dvoinikov, “Determination of the plastic deformation resistance of metallic materials on an automated plastometric complex,” Diagn., Res. Mec. Mater. Str., No. 2, 24–43 (2015).

  2. A. A. Popov, R. Z. Valiev, I. Yu. Pyshmintsev, S. L. Demakov, and A. G. Illarionov, “Formation of the structure and properties of commercial-purity titanium with a nanocrystalline structure after deformation and subsequent heating,” Fiz. Met. Metalloved. 83 (5), 127–133 (1997).

    CAS  Google Scholar 

  3. M. Janeček, J. Stráský, P. Harcuba, K. Václavová, J. Čížek, V. V. Polyakova, and I. P. Semenova, “Mechanical properties and dislocation structure evolution in Ti6Al7Nb alloy processed by high pressure torsion,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 45 (1), 7–15 (2014).

  4. D. G. Robertson and H. B. McShane, “Isothermal hot deformation behavior of metastable beta titanium alloy Ti–10V– 2Fe–3Al,” Mater. Sci. Techn. 13, 575–583 (1997).

    CAS  Google Scholar 

  5. E. Calvert, J. Pollard, M. Jackson, B. Wynne, and R. Thackray, “Determining a flow stress model for high temperature deformation of Ti–6Al–4V,” Mater. Sci. Forum 828829, 441–446 (2015).

  6. O. P. Shaboldo, S. A. Mazurov, A. A. Kononov, M. A. Skotnikova, and A. I. Shamshurin, “Effect of preliminary quenching on the efficiency of hardening heat treatment of cold-deformed β-titanium alloy TS6,” Metal Sci. Heat Treat. 59 (5–6), 370–376 (2017).

  7. A. I. Khorev, “Fundamental and applied works on structural titanium alloys and promising directions in development,” Trudy VIAM, No. 2, St 04 (2013). http://www.viam-works.ru.

  8. A. G. Bratukhin, B. A. Kolachev, V. V. Sadkov, and V. D. Talalaev, Technology of Production of Titanium Aircraft Structures (Mashinostroenie, Moscow, 1995).

    Google Scholar 

  9. G. Ye. Mazharova, A. Z. Komanovskii, B. E. Chechulin, and S. F. Vazhenin, Metal Forming of Titanium Alloys (Metallurgiya, Moscow, 1977).

    Google Scholar 

  10. I. V. Gorynin and B. B. Chechulin, Titanium Alloys in Mechanical Engineering (Mashinostroenie, Leningrad, 1990).

    Google Scholar 

  11. S. L. Semiatin, M. Obstalecki, E. J. Payton, A. L. Pilchak, P. A. Shade, J. S. Tiley, N. C. Levkulich, J. M. Shank, D. C. Pagan, and F. Zhang, “Dissolution of the alpha phase in Ti–6Al–4V during isothermal and continuous heat treatment,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 50, 2356–2370 (2019).

    CAS  Google Scholar 

  12. E. A. Borisova, G. A. Bochvar, M. Ya. Brown, et al., Titanium Alloys. Metallography of Titanium Alloys (Metallurgiya, Moscow, 1980).

    Google Scholar 

  13. G. S. Dyakonov, I. P. Semenova, R. Z. Valiev, S. Mironov, and S. L. Semiatin, “EBSD analysis of grain-refinement mechanisms operating during equal-channel angular pressing of commercial-purity titanium,” Acta Mater. 173, 174–183 (2019).

  14. Z. X. Zhang, S. J. Qu, A. H. Feng, J. Shen, and D. L. Chen, “Hot deformation behavior of Ti–6Al–4V alloy: effect of initial microstructure,” J. Alloys Compd. 718, 170–181 (2017).

    CAS  Google Scholar 

  15. S. L. Semiatin and T. R. Bieler, “Effect of texture and slip mode on the anisotropy of plastic flow and flow softening during hot working of Ti–6Al–4V,” Metall. Mater. Trans., A 32 (7), 1787–1799 (2001).

    Google Scholar 

  16. A. I. Khorev, “Fundamentals of the theory of thermal and thermomechanical treatment and textural hardening of titanium alloys,” Tsvetn. Met., No. 9, 79–85 (2008).

  17. Yu. N. Loginov, S. V. Gladkovskii, A. I. Potapov, A. A. Fomin, and D. R. Salikhyanov, “Investigation of the deformation resistance of polycrystalline iridium,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 4, 48–54 (2015).

  18. S. V. Gladkovskii, A. I. Potapov, and D. R. Salikhyanov, “Rheological properties and substantiation of hot rolling regimes of low- and medium carbon structural steels,” Solid State Phen. 284, 653–661 (2018).

    Google Scholar 

  19. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties: A Handbook (Moscow, VILS–MATI, 2009).

    Google Scholar 

  20. L. I. Mirkin, X-ray Diffraction Control of Machine-Building Materials: A Handbook (Mashinostroenie, Moscow, 1979).

    Google Scholar 

  21. R. G. Guan, Y. T. Je, Zh. Y. Zhao, and Ch. S. Lee, “Effect of microstructure on deformation behavior of Ti‒6Al–4V alloy during compressing process,” Mater. Design. 36, 796–803 (2012).

    CAS  Google Scholar 

  22. S. V. Gladkovskii, V. E. Veselova, A. M. Patselov, and V. A. Khotinov, “Influence of deformation stability of the β phase in a VT23 titanium alloy on the phase composition, structure, and mechanical properties during tension and impact bending,” Vestn. PNRPU. Mashinostr. Materialoved. 21 (4), 26–33 (2019).

    Google Scholar 

  23. V. N. Fedulov, “Conditions of hardening a high-strength α + β VT23 titanium alloy for aviation engineering,” Lit’e Metallurg. 92 (3), 141–147 (2018).

    Google Scholar 

  24. M. Klimova, S. Zherebtsov, G. Salishchev, and S. L. Semiatin, “Influence of deformation on the Burgers orientation relationship between the α and β phases in Ti–5Al–5Mo–5V–1Cr–1Fe,” Mater. Sci. Eng. A 645, 292–297 (2015).

    CAS  Google Scholar 

Download references

Funding

This work was performed in terms of state assignments of Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences (project no. AAAA-A18-118020790147-4) and M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences (project no. AAAA-A18-118020190104-3).

The plastometric tests were carried out at the Plastometry core facility of Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Veselova.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkovskii, S.V., Volkov, V.P., Salikhyanov, D.R. et al. Rheological Behavior of a VT23 Alloy during Deformation in a Wide Temperature Range. Russ. Metall. 2020, 1147–1150 (2020). https://doi.org/10.1134/S0036029520100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520100079

Keywords:

Navigation