Skip to main content
Log in

Spectral Study of the Inverse Effect of Metal on the Properties of a Carrier

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effects of the mutual influence of supported metal nanoparticles and a carrier are considered for different cases where the carrier is a solid acid, a solid base, a semiconductor, or a conducting material. Special attention is given to the inverse side of this mutual influence, i.e., modification of the properties of the carrier itself due to the influence of metal particles, which has virtually not been studied or considered before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. C. Bond, Metal-Support and Metal Additive Effects in Catalysis, Ed. by B. Imelik, C. Naccache, G. Courier, (Elsevier, Amsterdam, 1982), Ch. 1.

    Google Scholar 

  2. M. Boudart and G. Diega-Maradossou, Kinetics of Heterogeneous Catalytic Reaction (Princeton Univ. Press, Princeton, NJ, 1984).

    Book  Google Scholar 

  3. P. Gallezot, J. Datka, J. Massardier, et al., in Proceedings of the 6th International Congress on Catalysis, Ed. by G. C. Bond (Chemical Society, London, 1977), p. 696.

  4. L. L. Sheu, H. Knözinger, and W. M. H. Sachtler, J. Am. Chem. Soc. 111, 8125 (1989).

    Article  CAS  Google Scholar 

  5. J. A. van Bokhoven and J. T. Miller, AIP Conf. Proc. 882, 582 (2007).

    Article  CAS  Google Scholar 

  6. R. van Hardefeld and F. Hartog, Surf. Sci. 15, 189 (1969).

    Article  Google Scholar 

  7. S. Alayoglu and G. Somorjai, Catal. Lett. 145, 249 (2015).

    Article  CAS  Google Scholar 

  8. A. Berko and F. Solymosi, Surf. Sci. 411, L900 (1998).

    Article  CAS  Google Scholar 

  9. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley, Chichester, 2003).

    Book  Google Scholar 

  10. J. Radnik, C. Mohr, and P. Claus, Phys. Chem. Chem. Phys. 5, 172 (2003).

    Article  CAS  Google Scholar 

  11. G. Ertl and J. Kuppers, Low Energy Electrons and Surface Chemistry (VCH, Weinheim, 1985).

    Google Scholar 

  12. C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).

    Article  CAS  Google Scholar 

  13. L. M. Kustov and A. Yu. Stakheev, in Proceedings of the North American Catalysis Society Meeting, Toronto,2001, p. 173.

  14. A. Yu. Stakheev and L. M. Kustov, Appl. Catal., A 188, 3 (1999).

  15. Yu. V. Larichev, B. L. Moroz, V. I. Zaikovskii, et al., J. Phys. Chem. C 111, 9427 (2007).

    Article  CAS  Google Scholar 

  16. K. Aika, A. Ohya, A. Ozaki, et al., J. Catal. 92, 305 (1985).

    Article  CAS  Google Scholar 

  17. M. Muhler, F. Rosowski, O. Hinrichsen, et al., Stud. Surf. Sci. Catal. 101, 317 (1996).

    Article  CAS  Google Scholar 

  18. K. Aika, J. Kubota, Y. Kadowaki, et al., Appl. Surf. Sci. 121–122, 488 (1997).

    Article  Google Scholar 

  19. O. Hinrichsen, F. Rosowski, A. Hornung, et al., J. Catal. 165, 33 (1997).

    Article  CAS  Google Scholar 

  20. S. Dahl, A. Logadottir, C. J. H. Jacobsen, and J. K. Norskov, Appl. Catal., A 222, 19 (2001).

  21. M. G. Cattania, F. Parmigiani, and V. Ragaini, Surf. Sci. 211–212, 1097 (1989).

    Article  Google Scholar 

  22. E. A. Redina, K. V. Vikanova, G. I. Kapustin, et al., Eur. J. Org. Chem. 2019, 4159 (2019).

    Article  CAS  Google Scholar 

  23. C. Y. Hsu, T. C. Chiu, M. H. Shih, et al., J. Phys. Chem. C 114, 4502 (2010).

    Article  CAS  Google Scholar 

  24. F. Cardenas-Lizana, Y. Hao, M. Crespo-Quesada, et al., ACS Catal. 3, 1386 (2013).

    Article  CAS  Google Scholar 

  25. S. Zhang, J. Li, Z. Xia, et al., Nanoscale 9, 3140 (2017).

    Article  CAS  Google Scholar 

  26. S. Zhang, Z. Xia, T. Ni, et al., J. Catal. 359, 101 (2018).

    Article  CAS  Google Scholar 

  27. E. A. Redina, K. V. Vikanova, A. A. Shesterkina, and L. M. Kustov, Russ. J. Phys. Chem. A 92, 2143 (2018).

    Article  CAS  Google Scholar 

  28. K. V. Vikanova, E. A. Redina, G. I. Kapustin, N. A. Davshan, and L. M. Kustov, Russ. J. Phys. Chem. A 93, 231 (2019).

    Article  CAS  Google Scholar 

  29. K. V. Vikanova and E. A. Redina, Russ. J. Phys. Chem. A 92, 2355 (2018).

    Article  CAS  Google Scholar 

  30. O. Kirichenko, V. Nissenbaum, G. Kapustin, et al., J. Therm. Anal. Calorim. 138, 2205 (2019).

    Article  CAS  Google Scholar 

  31. J. T. Miller, A. J. Kropf, Y. Zha, et al., J. Catal. 240, 222 (2006).

    Article  CAS  Google Scholar 

  32. R. S. Oosthuizen and V. O. Nyamori, Platinum Met. Rev. 55, 154 (2011).

    Article  CAS  Google Scholar 

  33. D. Duca, F. Ferrante, and G. la Manna, J. Phys. Chem. C 111, 5402 (2007).

    Article  CAS  Google Scholar 

  34. D. S. Su, S. Perathoner, and G. Centi, Chem. Rev. 113, 5782 (2013).

    Article  CAS  Google Scholar 

  35. J. Zhu, A. Holmen, and D. Chen, ChemCatChem 5, 378 (2013).

    Article  CAS  Google Scholar 

  36. S. Perathoner, C. Ampelli, C. Shimming, et al., J. Energy Chem. 26, 207 (2017).

    Article  Google Scholar 

  37. W. Xia, Catal. Sci. Technol. 6, 630 (2016).

    Article  CAS  Google Scholar 

  38. Y. Zheng, Y. Jiao, Y. Zhu, et al., Nat. Commun. 5, 3783 (2014).

    Article  Google Scholar 

  39. Y. Ito, W. Cong, T. Fujita, et al., Angew. Chem., Int. Ed. Engl. 54, 2131 (2015).

    Article  CAS  Google Scholar 

  40. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).

    Article  CAS  Google Scholar 

  41. R. G. Rao, R. Blume, T. W. Hansen, et al., Nat. Commun. 8, 340 (2017).

    Article  CAS  Google Scholar 

  42. Z. Zhao, X. Huang, M. Li, et al., J. Am. Chem. Soc. 137, 15672 (2015).

    Article  CAS  Google Scholar 

  43. R. Arrigo, M. E. Schuster, S. Wrabetz, et al., ACS Catal. 6, 6959 (2016).

    Article  CAS  Google Scholar 

  44. Y.-J. Lin and J.-J. Zeng, Appl. Phys. Lett. 102, 183120 (2013).

    Article  CAS  Google Scholar 

  45. P. V. Kumar, M. Bernardi, and J. C. Grossman, ACS Nano 7, 1638 (2013).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-73-20282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kustov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustov, L.M., Redina, E.A., Tkachenko, O.P. et al. Spectral Study of the Inverse Effect of Metal on the Properties of a Carrier. Russ. J. Phys. Chem. 94, 2342–2348 (2020). https://doi.org/10.1134/S0036024420110187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420110187

Keywords:

Navigation