Skip to main content
Log in

Synthesis and Crystal-Chemical, Thermal, and Spectrochemical Properties of the Zn2 – 2xNi2xSiO4 Solid Solution with a Willemite Structure

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It has been found that the isomorphic capacity of the Zn2 – 2xNi2xSiO4 solid solution with a willemite structure is 15 mol % Ni. The unit cell parameters of Zn2 – 2xNi2xSiO4 samples in the homogeneity range of the solid solution are nearly independent of the content of dopant х and are close to those of undoped Zn2SiO4. It has been shown that the melting point of Zn2 – 2xNi2xSiO4 decreases with an increase in х from 1512°С for х = 0 to 1455°С for х = 0.15. The UV-Vis absorption spectrum and color coordinates of Zn2 – 2xNi2xSiO4 correspond to the blue range, and the color intensity of the pigment increases with increasing nickel content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. I. Krasnenko, A. N. Enyashin, N. A. Zaitseva, et al., J. Alloys Compd. 820, 153121 (2020). https://doi.org/10.1016/j.jallcom.2019.153129

    Article  CAS  Google Scholar 

  2. M. Takesue, H. Hayashi, and R. L. Smith, Prog. Cryst. Growth Charact. Mater. 55, 98 (2009). https://doi.org/10.1016/j.pcrysgrow.2009.09.001

    Article  CAS  Google Scholar 

  3. K. Omri, O. M. Lemine, and L. El Mir, J. Ceram. Int. 43, 6585 (2017). https://doi.org/10.1016/j.ceramint.2017.02.091

    Article  CAS  Google Scholar 

  4. A. Fores, M. Liusar, J. A. Badenes, et al., Green Chem. 2, 93 (2000). https://doi.org/10.1039/B000748J

    Article  CAS  Google Scholar 

  5. M. Llusar, A. Fores, J. A. Badenes, et al., J. Eur. Ceram. Soc. 21, 1121 (2001). https://doi.org/10.1016/S0955-2219(00)00295-8

    Article  CAS  Google Scholar 

  6. E. Ozel, H. Yurdakul, S. Turan, et al., J. Eur. Ceram. Soc. 30, 3319 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.08.013

    Article  CAS  Google Scholar 

  7. N. A. Zaitseva, T. I. Krasnenko, T. A. Onufrieva, and R. F. Samigullina, Russ. J. Inorg. Chem. 62, 168 (2017). https://doi.org/10.1134/S0036023617020218

    Article  CAS  Google Scholar 

  8. Q. Y. Zhang, K. Pita, W. Ye, and W. X. Que, Chem. Phys. Lett. 351, 163 (2002). https://doi.org/10.1016/S0009-2614(01)01370-7

    Article  CAS  Google Scholar 

  9. Y. Ping, K. L. Meng, F. S. Chun, et al., Inorg. Chem. Commun. 7, 268 (2004). https://doi.org/10.1016/j.inoche.2003.11.016

    Article  CAS  Google Scholar 

  10. B. Ch. Babu and S. Buddhudu, Ind. J. Phys. 88, 631 (2014). https://doi.org/10.1007/s12648-014-0455-0

    Article  CAS  Google Scholar 

  11. B. Ch. Babu, K. N. Kumar, B. H. Rudramadevia, et al., Ferroel. Lett. Sect. 38, 28 (2014). https://doi.org/10.1080/07315171.2014.908682

    Article  CAS  Google Scholar 

  12. G. T. Chandrappa, S. Ghosh, and K. C. Patil, J. Mater. Synth. Process. 7, 273 (1999). https://doi.org/10.1023/A:1021816803246

    Article  CAS  Google Scholar 

  13. P. Yang, M. K. Lu, C. F. Song, et al., Inorg. Chem. Commun. 5, 482 (2002). https://doi.org/10.1016/S1387-7003(02)00456-2

    Article  CAS  Google Scholar 

  14. R. M. Krsmanovic, Z. Antic, M. Mitric, et al., Appl. Phys. A: Mater. Sci. Process. 104, 483 (2011). https://doi.org/10.1007/s00339-011-6291-6

    Article  CAS  Google Scholar 

  15. G. N. Maslennikova, A. I. Glebycheva, and N. P. Fomina, Glass Ceram. 31, 562 (1974). https://doi.org/10.1007/BF00676805

    Article  Google Scholar 

  16. A. E. Lavat and G. X. Gayo, Ceram. Int. 40, 11947 (2014). https://doi.org/10.1016/j.ceramint.2014.04.031

    Article  CAS  Google Scholar 

  17. C. H. Bates, W. B. White, and R. Roy, J. Inorg. Nucl. Chem. 28, 397 (1966). https://doi.org/10.1016/0022-1902(66)80318-4

    Article  CAS  Google Scholar 

  18. O. I. Gyrdasova, V. N. Krasil’nikov, E. V. Shalaeva, et al., Dokl. Chem. 434, 1134 (2010). https://doi.org/10.1134/S0012500810090016

    Article  CAS  Google Scholar 

  19. N. A. Zaitseva, T. A. Onufrieva, J. A. Barykina, et al., Mater. Chem. Phys. 209, 107 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.071

    Article  CAS  Google Scholar 

  20. O. Tamada, K. Fujino, and S. Sasaki, Acta Crystallogr., Sect. B: Struct. Sci. 39, 692 (1983). https://doi.org/10.1107/S0108768183003250

    Article  Google Scholar 

  21. E. Zannoni, E. Cavalli, A. Toncelli, et al., J. Phys. Chem. Solids 60, 449 (1999). https://doi.org/10.1016/S0022-3697(98)00314-X

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 19-03-00189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zaitseva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, I.V., Zaitseva, N.A., Samigullina, R.F. et al. Synthesis and Crystal-Chemical, Thermal, and Spectrochemical Properties of the Zn2 – 2xNi2xSiO4 Solid Solution with a Willemite Structure. Russ. J. Inorg. Chem. 65, 1535–1540 (2020). https://doi.org/10.1134/S0036023620100101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620100101

Keywords:

Navigation