Skip to main content
Log in

In Situ and Ex Situ Studies of Tetrammineplatinum(II) Chromate Thermolysis

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Comparative analysis have shown that the thermolysis of complex salt [Pt(NH3)4]CrO4 in synthetic air atmosphere under in situ and ex situ conditions proceeds in different routes. In contrast to in situ experiment, ex situ decomposition leads to formation of intermediate PtCrO2 phase with delafossite structure. Final decomposition product is a homogeneous mixture of platinum metal and chromium(III) oxide. Complex [Pt(NH3)4]CrO4 has been shown to have negative volumetric coefficient of thermal expansion in the temperature range 30–200°C (–1.9 × 10–5 1/K). Ex situ experiments have shown stability of the complex on consecutive cyclic heating to 200°C and cooling to ambient temperature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. I. Potemkin, D. K. Maslov, K. Loponov, et al., Front. Chem. 6 (2018). https://doi.org/10.3389/fchem.2018.00085

  2. A. V. Zadesenets, E. Y. Filatov, P. E. Plyusnin, et al., New J. Chem. 42, 8843 (2018). https://doi.org/10.1039/c8nj00956b

    Article  CAS  Google Scholar 

  3. I. V. Korol’kov, S. A. Martynova, K. V. Yusenko, et al., Russ. J. Inorg. Chem. 55, 1347 (2010). https://doi.org/10.1134/S0036023610090032

    Article  CAS  Google Scholar 

  4. A. K. Kirilovich, P. E. Plyusnin, D. A. Piryazev, et al., Russ. J. Inorg. Chem. 62, 886 (2017). https://doi.org/10.1134/S0036023617070099

    Article  CAS  Google Scholar 

  5. K. V. Yusenko, S. I. Pechenyuk, E. S. Vikulova, et al., J. Struct. Chem. 60, 1062 (2019). https://doi.org/10.1134/S0022476619070060

    Article  CAS  Google Scholar 

  6. E. V. Makotchenko, P. E. Plyusnin, Y. V. Shubin, et al., Russ. J. Inorg. Chem. 62, 12 (2017). https://doi.org/10.1134/S0036023617010119

    Article  CAS  Google Scholar 

  7. P. Lunca-Popa, J. Botsoa, M. Bahri, et al., Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-58312-z

    Article  CAS  Google Scholar 

  8. K. H. L. Zhang, K. Xi, M. G. Blamire, et al., J. Phys. Condens. Matter 28, 383002 (2016). https://doi.org/10.1088/0953-8984/28/38/383002

  9. K. Yatsugi, T. Ishizaki, K. Akedo, et al., J. Nanoparticle Res. 21, 60 (2019). https://doi.org/10.1007/s11051-019-4497-2

  10. D. Kaewsai, S. Yeamdee, S. Supajaroon, et al., Int. J. Hydrogen Energy 43, 5133 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.101

    Article  CAS  Google Scholar 

  11. D. I. Potemkin, E. S. Saparbaev, A. V. Zadesenets, et al., Catal. Ind. 10, 62 (2018). https://doi.org/10.1134/S2070050418010099

    Article  Google Scholar 

  12. H. Fang, J. Yang, M. Wen, et al., Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201705698

  13. Q. Zhang, X. -P. Wu, Y. Li, et al., ACS Catal. 6, 6236 (2016). https://doi.org/10.1021/acscatal.6b01226

    Article  CAS  Google Scholar 

  14. J. Yu, J. Lei, C. Yan, et al., Asian J. Chem. 26, 4755 (2014).

    Article  CAS  Google Scholar 

  15. E. N. Tupikova, I. A. Platonov, and D. S. Khabarova, Kinet. Catal. 60, 366 (2019). https://doi.org/10.1134/S0023158419030145

    Article  CAS  Google Scholar 

  16. E. Filatov, V. Lagunova, D. Potemkin, et al., Chem.-Eur. J. 26, 4341 (2020). https://doi.org/10.1002/chem.201905391

    Article  CAS  PubMed  Google Scholar 

  17. V. M. Aulchenko, O. V. Evdokov, V. D. Kutovenko, et al., Nucl. Instrum. Methods Phys. Res. A. 603, 76 (2009). https://doi.org/10.1016/j.nima.2008.12.164

  18. Powder Diffraction File. PDF-2. International Centre for Diffraction Data, Pennsylvania, USA, (2014).

  19. W. Kraus and G. Nolze, PowderCell 2.4, Federal Institute for Materials Research and Testing, Berlin, 2000.

    Google Scholar 

  20. A. A. Coelho, TOPAS-Academic. Vers. 6.0 Coelho Software, Brisbane. 2019.

  21. S. Krumm, Materials Science Forum 228–231, 183 (1996). https://doi.org/10.4028/www.scientific.net/MSF.228-231.183

    Article  Google Scholar 

  22. T. A. Mary, J. S. Evans, T. Vogt, et al., Science 272, 90 (1996). https://doi.org/10.1126/science.272.5258.90

    Article  CAS  Google Scholar 

  23. M. Y. Petrushina, E. S. Dedova, E. Y. Filatov, et al., Sci. Rep. 8, 1 (2018). https://doi.org/10.1038/s41598-018-23529-6

    Article  CAS  Google Scholar 

  24. J. A. Monroe, J. S. McAllister, D. S. Content, et al., Proc. SPIE 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 107060R (2018).https://doi.org/10.1117/12.2314657

  25. J. W. Arblaster, Platin. Met. Rev. 57, 127 (2013). https://doi.org/10.1595/147106713X665030

    Article  CAS  Google Scholar 

  26. A. P. Mackenzie, Reports Prog. Phys. 80 (2017). https://doi.org/10.1088/1361-6633/aa50e5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Lagunova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagunova, V.I., Filatov, E.Y., Plyusnin, P.E. et al. In Situ and Ex Situ Studies of Tetrammineplatinum(II) Chromate Thermolysis. Russ. J. Inorg. Chem. 65, 1566–1570 (2020). https://doi.org/10.1134/S0036023620100150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620100150

Keywords:

Navigation