Skip to main content
Log in

Mechanism of the Azeotropy Phenomenon in Aqueous Formic Acid Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mechanism of the azeotropy phenomenon has been established at a molecular level for the first time on the example of the HCOOH–H2O system, which has an azeotropic region. The studies are based on the regularities of the formation of heteroassociates with strong hydrogen bonds in binary systems and on the assumption that both phases of a boiling azeotropic mixture are composed of the same heteroassociates. It has been established that an aqueous formic acid solution is azeotropic if the heteroassociates composing this solution at room temperature are converted under heating into the most stable of possible heteroassociates 2НСООН ∙ 2Н2О and 2НСООН ∙ Н2О, which are retained at boiling temperature. Such restructuring in the solution leads to the maximum strengthening of intermolecular interactions and occurs with minimum energy expenditures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. The Concise Chemical Encyclopedia, Ed. by I. L. Knunyants (Sovetskaya Entsiklopediya, Moscow, 1961), Vol. 1 [in Russian].

    Google Scholar 

  2. V. B. Kogan, V. M. Fridman, and V. V. Kafarov, Liquid–Vapor Equilibria (Nauka, Moscow/Leningrad, 1966) [in Russian].

    Google Scholar 

  3. T. Ito and F. Yoshida, J. Chem. Eng. Data 8, 315 (1963).

    Article  CAS  Google Scholar 

  4. V. A. Durov and E. P. Ageev, The Termodynamic Theory of Solutions (URSS, Moscow, 2018) [in Russian].

    Google Scholar 

  5. S. K. Ogorodnikov, T. M. Lesteva, and V. B. Kogan, Azeotropic Mixtures (Khimiya, Leningrad, 1971) [in Russian].

    Google Scholar 

  6. W. Swietoslawski, Azeotropy and Polyazeotropy (Ed. by K. Ridgway. London A Pergamon Press, 1968).

  7. J. E. Brady, General Chemistry: Principles and Structure (Wiley, New York, 1990).

    Google Scholar 

  8. R. P. Currier, T. B. Peery, M. F. Herman, et al., Fluid Phase Equilib. 493, 188 (2019). https://doi.org/10.1016/j.fluid.2019.04.006

    Article  CAS  Google Scholar 

  9. M. Ferreira and C. E. Schwarz, J. Chem. Eng. Data 63, 4614 (2018). https://doi.org/10.1021/acs.jced.8b00680

    Article  CAS  Google Scholar 

  10. Yu. A. Pisarenko, Russ. J. Phys. Chem. A 82, 1 (2008). https://doi.org/10.1134/S0036024408010019

    Article  CAS  Google Scholar 

  11. L. A. Serafimov, A. K. Frolkova, and L. A. Khakhin, Tonkie Khim. Tekhnol. 9 (4), 45 (2014).

    CAS  Google Scholar 

  12. T. Kim, H. Kaneko, N. Yamashiro, and K. Funatsu, Jpn. J. Comput. Chem. 11, 112 (2012). https://doi.org/10.2477/jccj.2011-0028

    Article  CAS  Google Scholar 

  13. V. Mazur, S. Haddad, and D. Nikitin, J. Appl. Solution Chem. Model. 3 (1), 1 (2014). https://doi.org/10.6000/1929-5030.2014.03.01.1

    Article  CAS  Google Scholar 

  14. J.-N. Jaubert, R. Privat, and N. Juntarachat, J. Supercrit. Fluids 94, 17 (2014). https://doi.org/10.1016/j.supflu.2014.06.014

    Article  CAS  Google Scholar 

  15. G. M. Platt, R. P. Domingos, and M. O. de Andrade, Comput. Sci. Discov. 7 (1), 1 (2014). https://doi.org/10.1088/1749-4699/7/1/015002

    Article  CAS  Google Scholar 

  16. N. P. Komninos and E. D. Rogdakis, Fluid Phase Equilib. 494, 212 (2019). https://doi.org/10.1016/j.fluid.2019.04.017

    Article  CAS  Google Scholar 

  17. Wang Dong, Yang Bin, Xu Baoqiang, and Yang HongWei, Vacuum 166, 206 (2019). https://doi.org/10.1016/j.vacuum.2019.05.005

    Article  CAS  Google Scholar 

  18. A. Wakisaka, K. Matsuura, M. Uranaga, et al., J. Mol. Liq. 160, 103 (2011). https://doi.org/10.1016/j.molliq.2011.03.002

    Article  CAS  Google Scholar 

  19. I. A. Kirilenko, Water–Electrolyte Systems (Krasand, Moscow, 2017) [in Russian].

    Google Scholar 

  20. I. A. Kirilenko, Russ. J. Inorg. Chem. 63, 1728 (2018). https://doi.org/10.1134/S0036023618130053

    Article  Google Scholar 

  21. G. V. Yukhnevich, E. G. Tarakanova, and S. I. Kargov, Russ. Chem. Bull. 61, 1079 (2012).

    Article  CAS  Google Scholar 

  22. E. G. Tarakanova and G. V. Yukhnevich, Russ. J. Inorg. Chem. 63, 549 (2018). https://doi.org/10.1134/S0036023618040216

    Article  CAS  Google Scholar 

  23. E. G. Tarakanova, G. V. Yukhnevich, I. S. Kislina, and V. D. Maiorov, Phys. Wave Phenom. 28 (2) 168 (2020). https://doi.org/10.3103/S1541308X2002017X

  24. E. G. Tarakanova, G. I. Voloshenko, I. S. Kislina, et al., J. Struct. Chem. 60, 266 (2019). https://doi.org/10.1134/S0022476619020100

    Article  Google Scholar 

  25. V. D. Maiorov, G. I. Voloshenko, I. S. Kislina, and E. G. Tarakanova, Russ. J. Phys. Chem. B. 14 (1), 5 (2020). https://doi.org/10.1134/S199079312001008X

Download references

ACKNOWLEDGMENTS

The authors are profoundly grateful to V.A. Lotkhov for useful consultation.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-03-00033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Tarakanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakanova, E.G., Kirilenko, I.A. Mechanism of the Azeotropy Phenomenon in Aqueous Formic Acid Solutions. Russ. J. Inorg. Chem. 65, 1591–1595 (2020). https://doi.org/10.1134/S0036023620100204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620100204

Keywords:

Navigation