Skip to main content
Log in

Unusual Four-Membered Metallocycles in Complexes of Main Group III Metals

  • CHEMISTRY OF MACROCYCLIC AND METALLOCYCLIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

The most important chemical and physical properties of Al, Ga, In, and Tl, as well as the basic aspects of their inorganic chemistry are summarized in this review. Special attention is given to the formation of stable and unusual 4-membered chelate rings in compounds of these metals. The current status of structural coordination and organometallic chemistry of main group III metals in oxidation states +1, +2 and +3, in respect of the formation of those uncommon metallocycles with variety of O, N, S, Se, and Te donor atoms, is reviewed. It turns out that thallium is the least represented metal in the group for this type of binding with conventionally used organic ligands. However, Tl+ readily forms Werner-type complexes with cyanoximes, which are a new subclass of ampolidentate organic ligands with the general formula NC–C(=N–OH)–R (where R is an electron-withdrawing group), capable of binding numerous metal ions. These Tl(I) cyanoximates possess unusual structures with dimeric Tl2O2 core, which can adopt either symmetrical or unsymmetrical planar/non-planar geometry. Structural chemistry, binding modes, thermal and spectroscopic properties of these ‘TlL’ composition complexes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.

Similar content being viewed by others

REFERENCES

  1. G. Miessler and D. Tarr, Inorganic Chemistry, 4th Ed. (Prentice Hall, 2011).

    Google Scholar 

  2. R. G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  CAS  Google Scholar 

  3. Q. Zheng, S. Borsley, Nichol, et al., Angew. Chem. Int. Ed. (2019). https://doi.org/101002/anie (201904207

  4. T. Roy, J. Soc. Leather Tech. Chem. 93(4),125 (2009).

    Google Scholar 

  5. H. S. Zijlstra and S. Harder, Eur. J. Chem. 1, 19 (2015).

    Google Scholar 

  6. J. Emsley, The Elements, 2nd Ed. (Clarendon Press, Oxford, 1991).

    Google Scholar 

  7. Properties of elements in Periodic Table: https://www. webelements. com.

  8. S. Aldridge and A. J. Downs, The Group 13 Metals Aluminum, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities (Wiley, London, 2011).

    Book  Google Scholar 

  9. C. Janiak, Coord. Chem. Rev. 163, 107 (1997).

    Article  CAS  Google Scholar 

  10. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th Ed. (Wiley, London. 1999).

    Google Scholar 

  11. V. Vallet, U. Wahlgren, and I. Grenthe, J. Am. Chem. Soc. 125, 48, 14941 (2003).

    Article  CAS  Google Scholar 

  12. K. B. Yatsimirskii, Theor. Exper. Chem. 16, 28 (1980).

    Article  Google Scholar 

  13. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton/London/New York, 2007).

  14. J. B. Hill, T. A. Talley, W. T. Pennington, and G. H. Robinson, J. Chem. Cryst. 24, 61 (1994).

    Article  CAS  Google Scholar 

  15. W. Uhl, A. -C. Fick, T. Spies, et al., Organometallics 23, 72 (2004).

    Article  CAS  Google Scholar 

  16. Z. Florjanczyk, W. Bury, E. Zygadlo-Monikowska, et al., J. Inorg. Chem. 48, 10892 (2009).

    Article  CAS  Google Scholar 

  17. S. A. Duraj, A. F. Hepp, R. Woloszynek, et al., Inorg. Chim. Acta 365, 54 (2011).

    Article  CAS  Google Scholar 

  18. S. Ghoshal, V. K. Jain, D. P. Dutta, et al., J. Organomet. Chem. 691, 5838 (2006).

    Article  CAS  Google Scholar 

  19. C. Nguyen, A. Adeogun, M. Afzaal, et al., Chem. Commun. 2182 (2006).

  20. B. Neumuller, M. Esser, and W. Petz, Z. Anorg. Allg. Chem. 633, 314 (2007).

    Article  CAS  Google Scholar 

  21. I. P. Ferreira, G. M. de Lima, E. B. Paniago, et al., J. Coord. Chem. 67, 1097 (2014).

    Article  CAS  Google Scholar 

  22. S. Saluschke, M. Pink, W. Dietzsch, et al., Z. Anorg. Allg. Chem. 619, 1862 (1993).

    Article  CAS  Google Scholar 

  23. M. Toma, A. Sanchez, M. S. Garcia-Tasende, et al., Appl. Organomet. Chem. 18, 302 (2004).

    Article  CAS  Google Scholar 

  24. M. Toma, A. Sanchez, J. S. Casas, J. et al., Central Eur. J. Chem. 4, 441 (2003).

    Google Scholar 

  25. A. L. Balch, B. J. Davis, E. Y. Fung, and M. M. Olmstead, Inorg. Chim. Acta 212, 149 (1993).

    Article  CAS  Google Scholar 

  26. R. P. Davies, C. V. Francis, A. P. S. Jurd, et al., Inorg. Chem. 43, 4802 (2004).

    Article  CAS  Google Scholar 

  27. C. Q. Nguyen, A. Adeogun, M. Afzaal, et al., Chem. Commun., 2182 (2006).

  28. G. A. Koutsantonis, F. C. Lee, and C. L. Raston, Main Group Chem., 1, 21 (1995).

    Article  CAS  Google Scholar 

  29. R. Anulevicz-Ostrowska, S. Lulinski, J. Serwatowski, and K. Suwinska, Inorg. Chem. 39, 5763 (2000).

    Article  CAS  Google Scholar 

  30. B. Neumuller and F. Gahlman, Chem. Ber. 126, 1579 (1993).

    Article  Google Scholar 

  31. M. Veith, S. Faber, H. Wolfanger, and V. Huch, Chem. Ber. 129, 381 (1996).

    Article  CAS  Google Scholar 

  32. M. A. Munoz-Hernandez, P. Wei, S. Liu, and D. A. Atwood, Coord. Chem. Rev. 210, 1 (2000).

    Article  CAS  Google Scholar 

  33. S. J. Rettig, A. Storr, and J. Trotter, Can. J. Chem. 53, 58 (1975).

    Article  CAS  Google Scholar 

  34. W. Uhl, R. Graupner, I. Hanh, and W. Saak, Z. Anorg. Allg. Chem. 625, 1113 (1999).

    Article  CAS  Google Scholar 

  35. H. Zhu, J. Chai, V. Jancik, et al., J. Am. Chem. Soc. 127, 10170 (2005).

    Article  CAS  Google Scholar 

  36. Z. A. Taha, E. W. Deguns, S.Chattopadhyay, and S. L. Scott, Organometallics 25, 1891 (2006).

    Article  CAS  Google Scholar 

  37. J. Lewinski, J. Zachara, and P. Hogerlad, Inorg. Chem. 40, 6086 (2001).

    Article  CAS  Google Scholar 

  38. G. D. Gracey, S. J. Rettig, A. Storr, and J. Trotter, Can. J. Chem. 65, 2469 (1987).

    Article  CAS  Google Scholar 

  39. Y. Shen, Y. Pan, and X. Jin, Polyhedron 18, 2423 (1999).

    Article  CAS  Google Scholar 

  40. Y. Sarazin, D. L. Hughes, and N. Kaltsoyannis, J. Am. Chem. Soc. 129, 881 (2007).

    Article  CAS  Google Scholar 

  41. S. H. Straus, O. P. Noirot, and O. P. Anderson, Inorg. Chem. 25, 3850 (1986).

    Article  Google Scholar 

  42. P. Pyykkö, Chem. Rev. 88, 563 (1988).

    Article  Google Scholar 

  43. J. Forníes, S. Fuertes, and A. Martín, et al., Dalton Trans., 2224 (2009).

  44. J. R. Berenguer, J. Fornies, Gil Belen, and E. Lalinde, Chem. Eur. Journ. 12, 785 (2006).

    Article  CAS  Google Scholar 

  45. M. A. Casado, J. J. Pérez-Torrente, J. A. López, et al., Inorg. Chem. 38, 10, 2482 (1999).

    Article  CAS  Google Scholar 

  46. J. Fornies, N. Gimenez, S. Ibanaz, et al., Inorg. Chem.,54, 4351 (2015).

    Article  CAS  Google Scholar 

  47. A. Diez, J. Fernandez, E. Lalinde, et al., Inorg. Chem. 49, 11606 (2010).

    Article  CAS  Google Scholar 

  48. G. Ma, M. Kritikos, M. Maliarik, and J. Glaser, Inorg. Chem. 43, 4328 (2004).

    Article  CAS  Google Scholar 

  49. I. Ara, J. R. Berenguer, J. Fornies, et al., Inorg. Chem. 36, 6461 (1997).

    Article  CAS  Google Scholar 

  50. J. Fornies, A. Garcia, E. Lalinde, et al., Inorg. Chem. 47, 3651 (2008).

    Article  CAS  Google Scholar 

  51. E. J. Fernandez, J. M. Lopez-de-Luziriaga, et al., J. Inorg. Chem. 44, 6012 (2005).

    Article  CAS  Google Scholar 

  52. K. S. Klimek, J. Prist, H. W. Roesky, et al., Organometallics 18, 5120 (1999).

    Article  CAS  Google Scholar 

  53. H. Rahbarnoohi, R. L. Wells, L. M. Liable-Sands, et al., Organometallics 16, 3959 (1997).

    Article  CAS  Google Scholar 

  54. J. Lewinski, J. Zachara, T. Kopec, et al., Eur. J. Inorg. Chem., 1123 (2001).

  55. J. S. Casas, A. Castineiras, I. Haiduc, et al., J. Mol. Struct. 656, 225 (2003).

    Article  CAS  Google Scholar 

  56. C. Xu, T. H. Baum, I. Guzei, and A. L. Rheinhold, Inorg. Chem. 39, 2008 (2000).

    Article  CAS  Google Scholar 

  57. J.-H. Park, G. A. Horley, O. O’Brien, et al., J. Mater. Chem. 11, 2346 (2001).

    Article  CAS  Google Scholar 

  58. N. Gerasimchuk, Dalton Trans. 48, 7985 (2019).

    Article  CAS  Google Scholar 

  59. N. Gerasimchuk, A. Gamian, G. Glover, et al., Inorg. Chem. 49, 9863 (2010).

    Article  CAS  Google Scholar 

  60. N. Gerasimchuk, Polymers 3, 2 (2011).

    Article  CAS  Google Scholar 

  61. A. A. Mokhir, K. V. Domasevich, N. Kent Dalley, et al., Inorg. Chim. Acta 284, 85 (1999).

    Article  CAS  Google Scholar 

  62. K. V. Domasevitch, N. N. Gerasimchuk, and A. A. Mokhir, Inorg. Chem. 39, 1227 (2000).

    Article  CAS  Google Scholar 

  63. K. V. Domasevitch, V. V. Skopenko, and E. B. Rusanov, Z. Naturforsch. B 51, 832 (1996).

    Article  CAS  Google Scholar 

  64. A. A. Mokhir, N. Gerasimchuk, E. V. Pol’shin, et al., Russ. J. Inorg. Chem. 39, 289 (1994).

    Google Scholar 

  65. N. Gerasimchuk, T. Maher, P. Durham, et al., Inorg. Chem. 46, 7268 (2007).

    Article  CAS  Google Scholar 

  66. V. V. Skopenko, O. A. Domashevskaya, N. Gerasimchuk, et al., Ukr. Khim. Zh. 52, 686 (1986).

    CAS  Google Scholar 

  67. O. A. Domashevskaya, Yu. A. Simonov, N. N. Gerasimchuk, et al., Russ. J. Coord. Chem. 16, 1544 (1990).

    CAS  Google Scholar 

  68. Yu. A. Simonov, O. A. Domashevskaya, V. V. Skopenko, et al., Koord. Khim. 17, 702 (1991).

    CAS  Google Scholar 

  69. K. V. Domasevitch and N. N. Gerasimchuk. Ukr. Khim. Zh. 58, 603 (1992).

    Google Scholar 

  70. O. T. Ilkun, S. Archibald, C. L. Barnes, et al., Dalton Trans., 5715 (2008).

  71. D. Robertson, C. Barnes, and N. Gerasimchuk, J. Coord. Chem. 57, 1205 (2004).

    Article  CAS  Google Scholar 

  72. N. Gerasimchuk, L. Goeden, P. Durham, et al., Inorg. Chim. Acta 361, 1983 (2008).

    Article  CAS  Google Scholar 

  73. S. Curtis, B. Lottes, Robertson, et al., Inorg. Chim. Acta (in press).

  74. G. Glower, N. Gerasimchuk, R. Biagioni, and K. V. Domasevitch, Inorg. Chem. 48, 2371 (2009).

    Article  CAS  Google Scholar 

  75. CRC Handbook of Chemistry and Physics, 67th ed., Ed. by R. C. Weast, M. J. Astle, and W. H. Beyer (CRC Press, Boca Raton, FL, 1986).

    Google Scholar 

  76. K. V. Domasevitch, Russ. J. Gen. Chem. 67, 1572 (1997).

    Google Scholar 

  77. N. N. Gerasimchuk, A. N. Tchernega, and A. A. Kapshuk, Russ. J. Inorg. Chem. 38, 1530 (1993).

    CAS  Google Scholar 

  78. D. Robertson, J. Cannon, N. Gerasimchuk, Inorg. Chem. 44, 8326 (2005).

    Article  CAS  Google Scholar 

  79. D. Marcano, N. Gerasimchuk, V. Nemykin, et al., Cryst. Growth Des. 12, 2877 (2012).

    Article  CAS  Google Scholar 

  80. C. Cheadle, N. Gerasimchuk, C. L. Barnes, et al., Dalton Trans. 42, 4931 (2013).

    Article  CAS  Google Scholar 

  81. S. Curtis, O. Ilkun, A. Brown, et al., Cryst. Eng. Commun. 15, 152 (2013).

    Article  CAS  Google Scholar 

  82. T. Klapötke, Structure and Bonding Ser., Vol. 157: High Energy Density Materials (Springer, 2007). https://doi.org/101007/978-3-540-72202-1

  83. N. Gerasimchuk, Eur. J. Inorg. Chem., 4518 (2014).

  84. S. R. Lotlikar, E. Gallaway, T. Grant, et al., Polymers 11, 1018 (2019).

    Article  CAS  Google Scholar 

  85. A. A. Opalade, C. J. Gomez-Garcia, N. Gerasimchuk, Cryst. Growth Des. 19, 678 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author deeply values the work and dedication of his graduate and undergraduate students and postdocs who contributed to this marvelous project of the investigation of four-membered thallium(I) metallocycles: Daniel Robertson, Leon Goeden, Scott Curtis, Drs. Olesya Ilkun, Daniela Marcano, Carl Cheadle, Konstantin Domasevich, Vira Grtitsenko and Attila Pallagi.

Funding

NG thanks Missouri State Graduate College for continuous support of his research, as well as the Cottrell Corporation and the National Institutes of Health (NIH) for funding part of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gerasimchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimchuk, N. Unusual Four-Membered Metallocycles in Complexes of Main Group III Metals. Russ. J. Inorg. Chem. 65, 1445–1480 (2020). https://doi.org/10.1134/S0036023620100071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620100071

Keywords:

Navigation