Skip to main content
Log in

Various Reactivity of Cyclocarbonate-Containing Chains of Vegetable Oil Triglycerides as the Cause of the Abnormal Kinetics of Urethane Formation with Their Participation

  • SYNTHESIS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The comparative reactivity of oleic, linoleic, and linolenic fragments of vegetable oil triglyceride chains in the processes of their conversion to the corresponding hydroxyurethanes is studied. According to DFT quantum-chemical calculations, the linolenic fragments of triglyceride chains are the most reactive. The activation barriers of reactions involving the second cyclocarbonate group of the linoleic fragment and the second and third cyclocarbonate groups of the linolenic fragment are lower than the conversion barriers of first cyclocarbonate groups of the corresponding models, which is explained by the catalytic assistance of the OH groups of hydroxyurethanes, which are formed at the first stage of aminolysis, to the proton transfer act.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Guan, Y. Song, Y. Lin, X. Yin, M. Zuo, Y. Zhao, X. Tao, and Q. Zheng, Ind. Eng. Chem. Res. 50, 6517 (2011).

    Article  CAS  Google Scholar 

  2. O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, PU Magaz. 10 (4), 1 (2013).

  3. B. Nohra, L. Candy, J.-F. Blanco, C. Guerin, Y. Raoul, and Z. Mouloungui, Macromolecules 46, 3771 (2013).

    Article  CAS  Google Scholar 

  4. H. Blattmann, M. Fleischer, M. Bahr, and R. Mulhaupt, Macromol. Rapid Commun. 35, 1238 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Polym. Adv. Technol. 26, 707 (2015).

    Article  CAS  Google Scholar 

  6. L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Chem. Rev. 115, 12407 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, Eur. Polym. J. 87, 535 (2017).

    Article  CAS  Google Scholar 

  8. K. Błażek and J. Datta, Crit. Rev. Environ. Sci. Technol. 49, 173 (2019).

    Article  Google Scholar 

  9. C. Carre, Y. Ecochard, S. Caillol, and L. Avérous, ChemSusChem 12, 3410 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. M. A. Levina, D. G. Miloslavskii, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, E. M. Gotlib, and R. P. Tiger, Polym. Sci., Ser. B 57, 584 (2015).

    Article  CAS  Google Scholar 

  11. M. A. Levina, D. G. Miloslavskii, M. V. Zabalov, M. L. Pridatchenko, A. V. Gorshkov, V. T. Shashkova, V. L. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 61, 540 (2019).

    Article  CAS  Google Scholar 

  12. M. V. Zabalov, V. L. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 59, 497 (2017).

    Article  Google Scholar 

  13. M. V. Zabalov, V. L. Krasheninnikov, and R. P. Tiger, Polym. Sci., Ser. B 60, 563 (2018).

    Article  Google Scholar 

  14. M. V. Zabalov, M. A. Levina, and R. P. Tiger, Russ. J. Phys. Chem. B 13, 778 (2019).

    Article  CAS  Google Scholar 

  15. M. A. Levina, M. V. Zabalov, V. G. Krasheninnikov, and R. P. Tiger, React. Kinet., Mech. Catal. 129, 65 (2020).

    Article  CAS  Google Scholar 

  16. A. Cornille, M. Blain, R. Auvergne, B. Andrioletti, B. Boutevina, and S. Caillol, Polym. Chem. 8, 592 (2017).

    Article  CAS  Google Scholar 

  17. M. A. Levina, V. G. Krasheninnikov, M. V. Zabalov, and R. P. Tiger, Polym. Sci., Ser. B 56, 139 (2014).

    Article  CAS  Google Scholar 

  18. M. V. Zabalov and R. P. Tiger, Theor. Chem. Acc. 136, Article 95 (2017).

    Article  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. M. Ernzerhoff and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    Article  Google Scholar 

  21. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).

    Article  CAS  Google Scholar 

  22. D. N. Laikov and Yu. A. Ustiniuk, Russ. Chem. Bull., Int. Ed. 54, 820 (2005).

    CAS  Google Scholar 

  23. R. M. Garipov, V. A. Sysoev, V. V. Mikheev, A. I. Zagidullin, R. Y. Deberdeev, V. I. Irzhak, and A. A. Berlin, Dokl. Phys. Chem. 393, 289 (2003).

    Article  CAS  Google Scholar 

  24. O. Lamarzelle, P.-L. Durand, A.-L. Wirotius, G. Chollet, E. Grau, and H. Cramail, Polym. Chem. 7, 1439 (2016).

    Article  CAS  Google Scholar 

  25. M. V. Zabalov and R. P. Tiger, Russ. Chem. Bull., Int. Ed. 65, 631 (2016).

    CAS  Google Scholar 

Download references

Funding

The work was performed as a part of the State Assignment 0082-2019-0003 (no. AAAA-A20-120021090129-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zabalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabalov, M.V., Levina, M.A. & Tiger, R.P. Various Reactivity of Cyclocarbonate-Containing Chains of Vegetable Oil Triglycerides as the Cause of the Abnormal Kinetics of Urethane Formation with Their Participation. Polym. Sci. Ser. B 62, 457–464 (2020). https://doi.org/10.1134/S1560090420050152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420050152

Navigation