Skip to main content
Log in

Synthesis of Block Copolymers of Acrylic Acid and N-Butyl Acrylate under Reversible Chain-Transfer Conditions in a Water-Alcohol Medium

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The laws of dispersion polymerization of n-butyl acrylate in an aqueous-alcoholic medium in the presence of a hydrophilic reversible addition-fragmentation chain-transfer poly(acrylic acid)-based polymeric agent with a trithiocarbonate group within the chain are investigated. It is shown that the portioned introduction of the monomer into the synthesis makes it possible to achieve higher maximum conversions. The resulting block copolymers are characterized by a relatively narrow molecular weight distribution and their number-average molecular weight increases linearly with increasing monomer concentration. The obtained dispersions of triblock copolymer poly(acrylic acid)–block-poly(n-butyl acrylate)–block-poly(acrylic acid) have a unimodal particle size distribution that persists after dialysis against water. It is shown that the synthesized dispersions may be used as a polymer matrix for immobilizing zinc oxide nanoparticles and as a polymer precursor in the process of the seeded polymerization of styrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. B. Charleux, G. Delaittre, J. Rieger, and F. D’Agosto, Macromolecules 45, 6753 (2012).

    Article  CAS  Google Scholar 

  2. Y. Mai and A. Eisenberg, Chem. Soc. Rev. 41, 5969 (2012).

    Article  Google Scholar 

  3. A. Blanazs, S. P. Armes, and A. J. Ryan, Macromol. Rapid Commun. 30, 267 (2009).

    Article  CAS  Google Scholar 

  4. A. A. Cockram, T. J. Neal, M. J. Derry, O. O. Mykhaylyk, N. S. J. Williams, M. W. Murray, S. N. Emmett, and S. P. Armes, Macromolecules 50, 796 (2017).

    Article  CAS  Google Scholar 

  5. A. Choucair, C. Lavigueur, and A. Eisenberg, Langmuir 20, 3894 (2004).

    Article  CAS  Google Scholar 

  6. K. Hales, Z. Chen, K. L. Wooley, and D. J. Pochan, Nano Lett. 8, 2023 (2008).

    Article  CAS  Google Scholar 

  7. H. Khan, M. Cao, W. Duan, T. Ying, and W. Zhang, Polymer 150, 204 (2018).

    Article  CAS  Google Scholar 

  8. G. Delaittre, M. Save, M. Gaborieau, P. Castignolles, J. Rieger, and B. Charleux, Polym. Chem. 3, 1526 (2012).

    Article  CAS  Google Scholar 

  9. K. H. Kim, J. Kim, and W. H. Jo, Polymer 46, 2836 (2005).

    Article  CAS  Google Scholar 

  10. Y. Kitayama, H. Moribe, K. Kishida, and M. Okubo, Polym. Chem 3, 1555 (2012).

    Article  CAS  Google Scholar 

  11. M. J. Derry, L. A. Fielding, and S. P. Armes, Prog. Polym. Sci. 52, 1 (2016).

    Article  CAS  Google Scholar 

  12. A. B. Lowe, Polymer 106, 161 (2016).

    Article  CAS  Google Scholar 

  13. Q. Zhang and S. Zhu, ACS Macro Lett. 4, 755 (2015).

    Article  CAS  Google Scholar 

  14. P. B. Zetterlund, F. Aldabbagh, and M. Okubo, J. Polym. Sci., Part A: Polym. Chem. 47, 3711 (2009).

    Article  CAS  Google Scholar 

  15. J. Tan, J. He, X. Li, Q. Xu, C. Huang, D. Liu, and L. Zhang, Polym. Chem. 8, 6853 (2017).

    Article  CAS  Google Scholar 

  16. H. Liu, C. Gao, Z. Ding, and W. Zhang, Macromol. Chem. Phys. 217, 467 (2016).

    Article  CAS  Google Scholar 

  17. J. Zhou, W. Zhang, C. Hong, and C. Pan, Polym. Chem. 7, 3259 (2016).

    Article  CAS  Google Scholar 

  18. W. D. He, X. L. Sun, W. M. Wan, and C. Y. Pan, Macromolecules 44, 3358 (2011).

    Article  CAS  Google Scholar 

  19. J. Yeow and C. Boyer, Adv. Sci. 4, 1700137 (2017).

    Article  Google Scholar 

  20. W. Zhang, F. D’Agosto, O. Boyron, J. Rieger, and B. Charleux, Macromolecules 45, 4075 (2012).

    Article  CAS  Google Scholar 

  21. S. Boissé, J. Rieger, K. Belal, A. Di-Cicco, P. Beaunier, M. H. Li, and B. Charleux, Chem. Commun. 46, 1950 (2010).

    Article  Google Scholar 

  22. J. Lesage de la Haye, X. Zhang, I. Chaduc, F. Brunel, M. Lansalot, and F. D’Agosto, Angew. Chem., Int. Ed. 55, 3739 (2016).

    Article  CAS  Google Scholar 

  23. X. Wang, C. A. Figg, X. Lv, Y. Yang, B. S. Sumerlin, and Z. An, ACS Macro Lett. 6, 337 (2017).

    Article  CAS  Google Scholar 

  24. S. Sugihara, S. P. Armes, and A. L. Lewis, Angew. Chem., Int. Ed. 49, 3500 (2010).

    Article  CAS  Google Scholar 

  25. X. Wang and Z. An, Macromol. Rapid Commun. 40, 1800325 (2018).

    Article  Google Scholar 

  26. A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, and S. P. Armes, J. Am. Chem. Soc. 133, 16581 (2011).

    Article  CAS  Google Scholar 

  27. S. Sugihara, S. P. Armes, A. Blanazs, and A. L. Lewis, Soft Matter 7, 10787 (2011).

    Article  CAS  Google Scholar 

  28. Y. Su, X. Xiao, S. Li, M. Dan, X. Wang, and W. Zhang, Polym. Chem 5, 578 (2014).

    Article  CAS  Google Scholar 

  29. M. Dan, F. Huo, X. Zhang, X. Wang, and W. Zhang, J. Polym. Sci., Part A: Polym. Chem. 51, 1573 (2013).

    Article  CAS  Google Scholar 

  30. X. Xiao, S. He, M. Dan, Y. Su, F. Huo, and W. Zhang, J. Polym. Sci., Part A: Polym. Chem. 51, 3177 (2013).

    Article  CAS  Google Scholar 

  31. E. V. Chernikova, A. V. Plutalova, K. O. Mineeva, I. R. Nasimova, E. Yu. Kozhunova, A. V. Bolshakova, A. V. Tolkachev, N. S. Serkhacheva, S. D. Zaitsev, N. I. Prokopov, and A. B. Zezin, Polym. Sci., Ser. B 57, 547 (2015).

    Article  CAS  Google Scholar 

  32. E. V. Chernikova, N. S. Serkhacheva, O. I. Smirnov, N. I. Prokopov, A. V. Plutalova, E. A. Lysenko, and E. Yu. Kozhunova, Polym. Sci., Ser. B 58, 629 (2016).

    Article  CAS  Google Scholar 

  33. N. S. Serkhacheva, N. I. Prokopov, E. V. Chernikova, E. Y. Kozhunova, I. O. Lebedeva, and O. V. Borisov, Polym. Int. 68, 1303 (2019).

    Article  CAS  Google Scholar 

  34. N. S. Serkhacheva, A. V. Plutalova, E. Yu. Kozhunova, N. I. Prokopov, and E. V. Chernikova, Polym. Sci., Ser. B 60, 204 (2018).

    Article  CAS  Google Scholar 

  35. N. S. Serkhacheva, O. I. Smirnov, A. V. Tolkachev, N. I. Prokopov, A. V. Plutalova, E. V. Chernikova, E. Yu. Kozhunova, and A. R. Khokhlov, RSC Adv. 7, 24522 (2017).

  36. E. V. Chernikova, P. S. Terpugova, C. Bui, and B. Charleux, Polymer 44, 4101 (2003).

    Article  CAS  Google Scholar 

  37. S. Dazhi, W. Minhao, S. Luyi, L. Yuntao, M. Nobuo, and S. Hung-Jue, J. Sol-Gel Sci. Technol. 43, 237 (2007).

    Article  Google Scholar 

  38. R. Giordanengo, S. Viel, M. Hidalgo, B. Allard-Breton, A. Thevand, and L. Charles, J. Am. Soc. Mass Spectrom. 21, 1075 (2010).

    Article  CAS  Google Scholar 

  39. Handbook of Radical Polymerization, Ed. by K. Matyjaszewski and T. P. Davis (Wiley, Weinheim, 2002).

    Google Scholar 

  40. E. V. Chernikova, A. V. Plutalova, E. S. Garina, and D. V. Vishnevetsky, Polym. Chem. 7, 3622 (2016).

    Article  CAS  Google Scholar 

  41. X. Yu, A. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Phys. 97, 7805 (1992).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-33-00386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Serkhacheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serkhacheva, N.S., Chernikova, E.V., Prokopov, N.I. et al. Synthesis of Block Copolymers of Acrylic Acid and N-Butyl Acrylate under Reversible Chain-Transfer Conditions in a Water-Alcohol Medium. Polym. Sci. Ser. B 62, 499–508 (2020). https://doi.org/10.1134/S1560090420050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090420050115

Navigation