Skip to main content
Log in

Effect of Magnetic Field of Elongated Solenoid on Deformation of Metal Shaped-Charge Jets

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Inertial stretching of a metal shaped-charge jet in the presence of magnetic field of elongated solenoid is analyzed. Effect of the magnetic field on the shaped-charge jet is aimed at inhibition of the development of plastic instability of the jet with an increase in its ultimate elongation and penetration capability. Several simplifying assumptions are used to obtain analytical description of electromagnetic processes in a fragment of the jet that moves inside and outside the solenoid. Induction heating of a fragment of the jet and the stress state therein are calculated with allowance for electromagnetic forces under the experimental conditions of the earlier experiments on the effect of the magnetic field of solenoid on shaped-charge jets. The results are used to substantiate the hypothesis on the possible reason for a relatively large difference between the experimental data of different authors on an increase in the penetration capability of shaped charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. J. Taylor, J. Appl. Phys. 19 (6), 563 (1948).

    Article  ADS  Google Scholar 

  2. M. A. Lavrent’ev, Usp. Mat. Nauk 12 (4(76)), 41 (1957).

    Google Scholar 

  3. P. C. Chou and W. J. Flis, Propellants, Explos., Pyrotech. 11 (4), 99 (1986).

    Article  Google Scholar 

  4. H. Shekhar, Cent. Eur. J. Energ. Mater. 9 (2), 155 (2012).

    Google Scholar 

  5. Explosion Physics, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004), Vol. 2 [in Russian].

    Google Scholar 

  6. W. P. Walters and J. A. Zukas, Fundamentals of Shaped Charges (Wiley, New York, 1989).

    Google Scholar 

  7. J. Petit, J. Appl. Phys. 98 (12), 123521 (2005).

    Article  ADS  Google Scholar 

  8. S. L. Hancock, Int. J. Impact Eng. 23 (1(1)), 353 (1999).

    Article  Google Scholar 

  9. O. V. Svirsky, M. A. Vlasova, M. I. Korotkov, V. A. Krutyakov, and T. A. Toropova, Int. J. Impact Eng. 29 (1–10), 683 (2003).

  10. A. V. Babkin, S. V. Ladov, V. M. Marinin, and S. V. Fedorov, J. Appl. Mech. Tech. Phys. 38 (2), 171 (1997).

    Article  ADS  Google Scholar 

  11. J. M. Walsh, J. Appl. Phys. 56 (7), 1997 (1984).

    Article  ADS  Google Scholar 

  12. L. A. Romero, J. Appl. Phys. 65 (8), 3006 (1989).

    Article  ADS  Google Scholar 

  13. A. V. Babkin, S. V. Ladov, V. M. Marinin, and S. V. Fedorov, J. Appl. Mech. Tech. Phys. 40 (4), 571 (1999).

    Article  ADS  Google Scholar 

  14. D. L. Littlefield and J. D. Powell, Phys. Fluids A 2 (12), 2240 (1990).

    Article  ADS  Google Scholar 

  15. C. E. Pollock, in Megagauss Magnetic Field Generation and Pulsed Power Applications (Nova Sci., New York, 1994), pp. 309–316.

    Google Scholar 

  16. A. I. Pavlovskii, L. N. Plyashkevich, A. M. Shuvalov, and A. Ya. Brodskii, Tech. Phys. 39, 479 (1994).

    Google Scholar 

  17. A. D. Matrosov and G. A. Shvetsov, J. Appl. Mech. Tech. Phys. 37 (4), 464 (1996).

    Article  ADS  Google Scholar 

  18. P. Appelgren, M. Skoglund, P. Lundberg, L. Westerling, A. Larsson, and T. Hurtig, J. Appl. Mech. 77 (1), 1 (2010).

    Article  Google Scholar 

  19. S. V. Fedorov, A. V. Babkin, and S. V. Ladov, Combust., Explos. Shock Waves 35 (5), 598 (1999).

    Article  Google Scholar 

  20. D. L. Littlefield, Phys. Fluids A 3 (12), 2927 (1991).

    Article  ADS  Google Scholar 

  21. A. V. Babkin, V. M. Marinin, and S. V. Fedorov, Oboron. Tekh., No. 9, 40 (1993).

  22. G. A. Shvetsov, A. D. Matrosov, and S. V. Stankevich, J. Appl. Mech. Tech. Phys. 56 (1), 125 (2015).

    Article  ADS  Google Scholar 

  23. B. Ma, Z.-X. Huang, X.-D. Zu, and Q.-Q. Xiao, Int. J. Impact Eng. 98, 88 (2016).

    Article  Google Scholar 

  24. B. Ma, Z. Huang, Z. Guan, X. Zu, X. Jia, and Q. Xiao, Int. J. Impact Eng. 113, 54 (2018).

    Article  Google Scholar 

  25. S. V. Fedorov, I. A. Bolotina, and Yu. A. Strukov, Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., No. 2, 39 (2018). https://doi.org/10.18698/1812-3368-2018-2-39-59

    Google Scholar 

  26. S. V. Fedorov, J. Appl. Mech. Tech. Phys. 57 (3), 483 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. V. Fedorov, A. V. Babkin, and S. V. Ladov, Tech. Phys. 48 (8), 1047 (2003).

    Article  Google Scholar 

  28. S. V. Fedorov, Combust., Explos. Shock Waves 41 (1), 106 (2005).

    Article  ADS  Google Scholar 

  29. S. V. Fedorov, Boepripasy Vysokoenerg. Kondens. Sist., No. S2, 73 (2008).

  30. G. Shvetsov, A. Matrosov, S. Fedorov, A. Babkin, and S. Ladov, PPPS 2001—Pulsed Power Plasma Science 2001, Proc. 28th IEEE Int. Conf. on Plasma Science and 13th IEEE Int. Pulsed Power Conf. (Las Vegas, USA, June 17–22,2001), Vol. 1, 1002023, p. 182 (2015). https://doi.org/10.1109/PPPS.2001.1002023

  31. S. V. Fedorov, A. V. Babkin, and S. V. Ladov, J. Eng. Phys. Thermophys. 74 (2), 364 (2001).

    Article  Google Scholar 

  32. A. V. Babkin, S. V. Ladov, V. M. Marinin, and S. V. Fedorov, Russ. J. Phys. Chem. B 18 (10–11), 1805 (2000).

  33. B. Ma, Z. Huang, Q. Xiao, X. Zu, X. Jia, and L. Ji, IEEE Trans. Plasma Sci. 45 (5), 875 (2017).

    Article  ADS  Google Scholar 

  34. B. Ma, Z. Huang, Z. Guan, X. Jia, Q. Xiao, and X. Zu, Int. J. Mech. Sci. 133, 283 (2017).

    Article  Google Scholar 

  35. B. Ma, Z. Huang, X. Zu, Q. Xiao, and X. Jia, Mod. Phys. Lett. A 31, 1750018 (2017).

    Article  Google Scholar 

  36. H. Xiang, X. Meng, C. Liang, X. Yuan, Q. Lv, B. Lei, and Q. Zhang, IEEE Trans. Plasma Sci. 47 (1), 944 (2019).

    Article  ADS  Google Scholar 

  37. Q.-Q. Xiao, Z.-X. Huang, X.-D. Zu, and X. Jia, Propellants, Explos., Pyrotech. 41 (1), 76 (2016).

    Article  Google Scholar 

  38. O. Ayisit, Int. J. Impact Eng. 35 (12), 1399 (2008).

    Article  Google Scholar 

  39. S. V. Fedorov, A. V. Babkin, and V. M. Marinin, Tech. Phys. 65 (4), 612 (2020).

    Article  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).

    MATH  Google Scholar 

  41. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, New York, 2011).

    Google Scholar 

  42. N. N. Lebedev, Special Functions and Their Applications (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Fedorov.

Ethics declarations

The author declare that he has no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, S.V. Effect of Magnetic Field of Elongated Solenoid on Deformation of Metal Shaped-Charge Jets. Tech. Phys. 65, 1609–1621 (2020). https://doi.org/10.1134/S1063784220100072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220100072

Navigation