Skip to main content
Log in

Investigation Insights into Electronic Structures, Exchange Splittings, Induced Ferromagnetism, and Half-Metallic Feature in New Ti-Doped BaS

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The new Ba1 − xTixS compounds based on the titanium (Ti)-doped BaS at various concentrations x = 0.25, 0.5, and 0.75 were characterized using the first-principle concepts of density functional theory. We investigated the doping effect of titanium on the structural and electronic properties, induced ferromagnetism, half-metallicity, and exchange splittings in Ba1 − xTixS materials. The origin of ferromagnetism in the Ba1−xTixS compounds is due to the localized partially occupied 3d (Ti) states related to the double exchange mechanism. The electronic structures of Ba1 − xTixS at concentrations x = 0.25 and 0.5 show half-metallic ferromagnetic character with spin polarization of 100%. For the concentration x = 0.75, the Ba0.25Ti0.75S compound exhibits a metallic nature for two spins channels due to widening 3d (Ti) states in the gap. Therefore, Ba1 − xTixS at concentrations x = 0.25 and 0.5 seems to be a candidate for spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, V. S. von Molnar, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  3. M. G. Kostenko, A. V. Lukoyanov, and E. I. Shreder, JETP Lett. 107, 126 (2018).

    Article  Google Scholar 

  4. S. Benatmane and S. Cherid, JETP Lett. 111, 694 (2020).

    Article  ADS  Google Scholar 

  5. S. D. Borisova, G. G. Rusina, S. Eremeev, and E. V. Chulkov, JETP Lett. 110, 211 (2019).

    Article  ADS  Google Scholar 

  6. S. Ghosal, H. Luitel, S. K. Mandal, D. Sanyal, and D. Jana, J. Phys. Chem. Solids 136, 109175 (2020).

    Article  Google Scholar 

  7. B. Doumi, A. Tadjer, F. Dahmane, A. Djedid, A. Yakoubi, Y. Barkat, M. O. Kada, A. Sayede, and L. Hamada, J. Supercond. Novel Magn. 27, 293 (2014).

    Article  Google Scholar 

  8. Santanu Das, A. Bandyopadhyay, Sukhen Das, and S. Sutradhar, J. Alloys Compd. 731, 591 (2018).

    Article  Google Scholar 

  9. H. Lakhdari, B. Doumi, A. Mokaddem, A. Sayede, J. P. Araújo, A. Tadjer, and M. Elkeurti, J. Supercond. Novel Magn. 32, 1781 (2019).

    Article  Google Scholar 

  10. L. Hua, J. Zhu, and Z. Lu, JETP Lett. 103, 631 (2016).

    Article  ADS  Google Scholar 

  11. E. Yakovleva, L. N. Oveshnikov, A. Kochura, K. Lisunov, E. Lahderanta, and B. A. Aronzon, JETP Lett. 101, 130 (2015).

    Article  ADS  Google Scholar 

  12. F. Estrada, E. Guzmán, O. Navarro, and M. Avignon, Phys. Rev. B 97, 195155 (2018).

    Article  ADS  Google Scholar 

  13. S. M. Thompson, J. Phys. D: Appl. Phys. 41, 093001 (2008).

    Article  ADS  Google Scholar 

  14. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  15. A. Fert, P. Grünberg, A. Barthélémy, F. Petroff, and W. Zinn, J. Magn. Magn. Mater. 140, 1 (1995).

    Article  ADS  Google Scholar 

  16. Q. Mahmood, M. Hassan, M. Yaseen, and A. Laref, Chem. Phys. Lett. 729, 11 (2019).

    Article  ADS  Google Scholar 

  17. I. Elahi, S. M. Alay-e-Abbas, S. Nazir, A. Shaukat, and M. N. Tahir, J. Magn. Magn. Mater. 477, 249 (2019).

    Article  ADS  Google Scholar 

  18. K. Korichi, B. Doumi, A. Mokaddem, A. Sayede, and A. Tadjer, Philos. Mag. 100, 1172 (2020).

    Article  ADS  Google Scholar 

  19. V. Y. Irkhin and M. I. Katsnel’son, Phys. Usp. 37, 659 (1994).

    Article  ADS  Google Scholar 

  20. M. S. Khan, L. Shi, B. Zou, and S. Ali, Comput. Mater. Sci. 174, 109491 (2020).

    Article  Google Scholar 

  21. S. Yamaoka, O. Shimomura, H. Nakazawa, and O. Fukunaga, Solid State Commun. 33, 87 (1980).

    Article  ADS  Google Scholar 

  22. S. T. Weir, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 35, 874 (1987).

    Article  ADS  Google Scholar 

  23. T. A. Grzybowski and A. L. Ruoff, Phys. Rev. Lett. 53, 489 (1984).

    Article  ADS  Google Scholar 

  24. A. Ruoff and T. Grzybowski, Solid State Physics under Pressure, Ed. by S. Minomura (Terra Scientific, Tokyo, 1985).

    Google Scholar 

  25. T. Grzybowski and A. Ruoff, Phys. Rev. B 27, 6502 (1983).

    Article  ADS  Google Scholar 

  26. K. L. Heng, S. J. Chua, and P. Wu, Chem. Mater. 12, 1648 (2000).

    Article  Google Scholar 

  27. Z. Addadi, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer, and F. Dahmane, J. Supercond. Novel Magn. 30, 917 (2017).

    Article  Google Scholar 

  28. K. Berriah, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer, and J. P. Araujo, J. Comput. Electron. 17, 909 (2018).

    Article  Google Scholar 

  29. H. S. Saini, P. Mehra, S. Sinhmar, J. Thakur, and M. K. Kashyap, Vacuum 109760 (2020, in press). https://doi.org/10.1016/j.vacuum.2020.109760

  30. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  31. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  32. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, in WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. by K. Schwarz (Tech. Univ. Wien, Wien, 2001).

    Google Scholar 

  33. D. J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method (Springer Science, New York, 2006).

    Google Scholar 

  34. Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  ADS  Google Scholar 

  35. A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  ADS  Google Scholar 

  36. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

  37. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  38. F. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  ADS  Google Scholar 

  39. S. T. Weir, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 33, 4221 (1986).

    Article  ADS  Google Scholar 

  40. M. Durandurdu, Chem. Phys. 367, 80 (2010).

    Article  Google Scholar 

  41. R. Bhattacharjee and S. Chattopadhyaya, J. Phys. Chem. Solids 110, 15 (2017).

    Article  ADS  Google Scholar 

  42. R. Bhattacharjee and S. Chattopadhyaya, Mater. Chem. Phys. 199, 295 (2017).

    Article  Google Scholar 

  43. S. Chattopadhyaya and R. Bhattacharjee, J. Alloys Compd. 694, 1348 (2017).

    Article  Google Scholar 

  44. B. Amimour, M. Slimani, C. Sifi, R. Khémissi, H. Meradji, S. Ghemid, S. B. Omran, and R. Khenata, Chin. J. Phys. 55, 367 (2017).

    Article  Google Scholar 

  45. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  46. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  47. K. Yao, G. Gao, Z. Liu, and L. Zhu, Solid State Commun. 133, 301 (2005).

    Article  ADS  Google Scholar 

  48. G. Gao, K. Yao, E. cSaşıoğlu, L. Sandratskii, Z. Liu, and J. Jiang, Phys. Rev. B 75, 174442 (2007).

    Article  ADS  Google Scholar 

  49. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science (Washington, DC, U. S.) 282, 85 (1998).

    Article  ADS  Google Scholar 

  50. K. Sato, H. Katayama-Yoshida, and P. Dederichs, J. Supercond. 16, 31 (2003).

    Article  ADS  Google Scholar 

  51. K. Sato, P. Dederichs, K. Araki, and H. Katayama-Yoshida, Phys. Status Solidi C 7, 2855 (2003).

    Article  Google Scholar 

  52. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

    Article  ADS  Google Scholar 

  53. S. Sanvito, P. Ordejon, and N. A. Hill, Phys. Rev. B 63, 165206 (2001).

    Article  ADS  Google Scholar 

  54. H. Raebiger, A. Ayuela, and R. Nieminen, J. Phys.: Condens. Matter 16, L457 (2004).

    ADS  Google Scholar 

  55. C. Liu, E. Alves, A. Ramos, M. Da Silva, J. Soares, T. Matsutani, and M. Kiuchi, Nucl. Instrum. Methods Phys. Res., Sect. B 191, 544 (2002).

    Article  ADS  Google Scholar 

  56. B. Doumi, A. Tadjer, F. Dahmane, D. Mesri, and H. Aourag, J. Supercond. Novel Magn. 26, 515 (2013).

    Article  Google Scholar 

  57. Q. Mahmood, S. Ali, M. Hassan, and A. Laref, Mater. Chem. Phys. 211, 428 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Doumi or A. Mokaddem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumi, B., Mokaddem, A. & Tadjer, A. Investigation Insights into Electronic Structures, Exchange Splittings, Induced Ferromagnetism, and Half-Metallic Feature in New Ti-Doped BaS. Jetp Lett. 112, 568–576 (2020). https://doi.org/10.1134/S0021364020210018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020210018

Navigation