Skip to main content
Log in

Effect of the Morphology of an Ensemble of ZnO Microrods on the Optical and Luminescence Properties

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of morphology on the optical and X-ray luminescence properties of an ensemble of zinc oxide microrods on single-crystal sapphire substrates has been studied. It has been shown that the intensity of X-ray luminescence depends on the volume of the ZnO single-crystal phase and the corresponding effective density of the absorbing medium. It has been found that the total transmission spectra of the samples have a complex structure. The transmittance primarily depends on the conditions of synthesis and nucleation, on the morphology of ZnO microrods, and on the degree of their misorientation in an ensemble. An array of ZnO microrods characterized by the rapid component of the X-ray luminescence kinetics in the range of 0–5 ns with a descending time of about 0.7 ns (taking into account the pump pulse) has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Tarasov, Ch. M. Briskina, V. M. Markushev, L. A. Zadorozhnaya, A. S. Lavrikov, and V. M. Kanevskii, JETP Lett. 110, 739 (2019).

    Article  ADS  Google Scholar 

  2. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, G. Schutz, E. Goering, B. Baretzky, and P. B. Straumal, JETP Lett. 97, 367 (2013).

    Article  ADS  Google Scholar 

  3. Z. H. Ibupoto, S. M. Ali, K. Khun, C. Chey, O. Nur, and M. Willander, Biosensors 1, 153 (2011).

    Article  Google Scholar 

  4. X. Zhou, J. Li, M. Ma, and Q. Xue, Phys. E (Amsterdam, Neth.) 43, 1056 (2011).

    Article  Google Scholar 

  5. P. A. Rodnyi, K. A. Chernenko, and I. D. Venevtsev, Opt. Spectrosc. 125, 372 (2018).

    Article  ADS  Google Scholar 

  6. M. R. Wagner, G. Callsen, G. S. Reparaz, et al., Phys. Rev. B 84, 035313 (2011).

    Article  ADS  Google Scholar 

  7. K. Oka, H. Shibata, and S. Kashiwaya, J. Cryst. Growth 237, 509 (2002).

    Article  ADS  Google Scholar 

  8. F. Huang, Z. Lin, W. Lin, J. Zhang, K. Ding, Y. Wang, Q. Zheng, Z. Zhan, F. Yan, D. Chen, P. Lv, and X. Wang, Chin. Sci. Bull. 59, 1235 (2014).

    Article  Google Scholar 

  9. A. N. Red’kin, Z. I. Makovei, A. N. Gruzintsev, E. E. Yakimov, O. V. Kononenko, and A. A. Firsov, Inorg. Mater. 45, 1246 (2009).

    Article  Google Scholar 

  10. T. V. Plakhov, M. V. Shestakov, and A. N. Baranov, Inorg. Mater. 48, 469 (2012).

    Article  Google Scholar 

  11. A. M. Opolchentsev, L. A. Zadorozhnaya, Ch. M. Briskina, A. P. Tarasov, V. M. Markushev, A. E. Muslimov, and V. M. Kanevskii, Opt. Spectrosc. 125, 522 (2018).

    Article  ADS  Google Scholar 

  12. P. A. Rodnyi, S. B. Mikhrin, A. N. Mishin, and A. V. Sidorenko, IEEE Trans. Nucl. Sci. 48, 2340 (2001).

    Article  ADS  Google Scholar 

  13. E. I. Givargizov, Growth of Filamentary and Plate Crystals from the Vapor (Nauka, Moscow, 1977), p. 42 [in Russian].

    Google Scholar 

  14. I. S. Volchkov, A. M. Opolchentsev, L. A. Zadorozhnaya, Yu. V. Grigor’ev, and V. M. Kanevskii, Tech. Phys. Lett. 45, 643 (2019).

    Article  ADS  Google Scholar 

  15. J. Watt, N. Young, S. Haigh, A. Kirkland, and R. D. Tilley, Adv. Mater. 21, 2288 (2009).

    Article  Google Scholar 

  16. M. K. Patra, K. Manzoor, M. Manoth, S. P. Vadera, and N. Kumar, J. Lumin. 128, 267 (2008).

    Article  Google Scholar 

  17. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  ADS  Google Scholar 

  18. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  19. I. Shalish, H. Temkin, and V. Narayanakhmurti, Phys. Rev. B 69, 245401 (2004).

    Article  ADS  Google Scholar 

  20. Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, Appl. Phys. Lett. 87, 211912 (2005).

    Article  ADS  Google Scholar 

  21. V. B. Mikhailik, P. C. F. Di Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, and M. A. Verdier, J. Appl. Phys. 109, 053116 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to V.I. Alshits for numerous stimulating discussions and constructive criticism.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment for the Federal Research Center Crystallography and Photonics, Russian Academy of Sciences) and by the Russian Foundation for Basic Research (project no. 18-29-12099 mk, fabrication and microscopic studies of the samples, and project no. 18-52-76002 ERA_a, study of the luminescence properties of the samples). The use of the equipment of the Shared-Access Center of the Federal Research Center Crystallography and Photonics was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Muslimov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 4, pp. 240–245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslimov, A.E., Venevtsev, I.D., Zadorozhnaya, L.A. et al. Effect of the Morphology of an Ensemble of ZnO Microrods on the Optical and Luminescence Properties. Jetp Lett. 112, 225–229 (2020). https://doi.org/10.1134/S0021364020160092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020160092

Navigation