Skip to main content
Log in

Coral Lipidomes and Their Changes during Coral Bleaching

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Numerous species of coral polyps form the structural basis of tropical coral reefs. Coral polyp tissues are rich in lipids. Currently, information on the composition of fatty acids and classes of coral lipid is reviewed. However, each lipid class represents a complex spectrum of molecular species of lipids, which is defined as the lipidome of a biological system. Scientific publications on human and higher terrestrial animal lipidomes exceed those on the lipidome of marine organisms by two orders of magnitude, and the data on coral lipidomes are very scattered. The existence of symbiotic coral species is completely dependent on the presence of intracellular microalgae (zooxanthellae), the loss of which is called coral bleaching and leads to the death of the entire coral reef. The bleaching causes significant changes in the lipid profile of corals. This paper summarizes information on the composition of common lipids, fatty acids, and molecules of polar and nonpolar lipid classes of octocoral and hexacoral polyps and their symbionts. We discuss general mechanisms of coral bleaching and show the importance of lipid indicators in the study of this process. The transition from classical integral indicators to the lipidomic analysis opens up new possibilities in the study of biochemistry and ecology of corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Spalding, M.D. and Grenfell, A.M., Coral Reefs, 1997, vol. 16, pp. 225–230. https://doi.org/10.1007/s003380050078

    Article  Google Scholar 

  2. Yamashiro, H., Oku, H., Higa, H., Chinen, I., and Sakai, K., Comp. Biochem. Physiol., vol. 122, pp. 397–407. https://doi.org/10.1016/S0305-0491(99)00014-0

  3. Imbs, A.B., Maliotin, A.N., Huyen, L.V., and Long, P.Q., Viet. J. Sci. Technol., 2005, vol. 43, pp. 84–91. https://doi.org/10.1007/s00338-007-0318-7

    Article  Google Scholar 

  4. Hamoutene, D., Puestow, T., Miller-Banoub, J., and Wareham, V., Coral Reefs, 2008, vol. 27, pp. 237–246. https://doi.org/10.1007/s00338-007-0318-7

    Article  Google Scholar 

  5. Yamashiro, H., Oku, H., and Onaga, K., Fish. Sci., 2005, vol. 71, pp. 448–453. https://doi.org/10.1111/j.1444-2906.2005.00983.x

    Article  CAS  Google Scholar 

  6. Awai, K., Matsuoka, R., and Shioi, Y., in Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 2012, p. 6A.

  7. Imbs, A.B., Latyshev, N.A., Dautova, T.N., and Latypov, Y.Y., Mar. Ecol. Progr. Ser., 2010, vol. 409, pp. 65–75. https://doi.org/10.3354/meps08622

    Article  CAS  Google Scholar 

  8. Lam, Ch.N., Nguen, Kh.K., Stekhov, V.B., and Svetashev, V.I., Biol. Morya, vol. 6, pp. 44–47.

  9. Latyshev, N.A., Svetashev, V.I., Khung, N.K., and Nga, D.T., Biol. Morya, 1986, vol. 3, pp. 52–56.

    Google Scholar 

  10. Treignier, C., Grover, R., Ferrier-Pages, C., and Tolosa, I., Limnol. Oceanogr., 2008, vol. 53, pp. 2702–2710. https://doi.org/10.4319/lo.2008.53.6.2702

    Article  CAS  Google Scholar 

  11. Spener, F., Lagarde, M., and Record, M., Eur. J. Lipid Sci. Technol., 2003, vol. 105, pp. 481–482. https://doi.org/10.1002/ejlt.200390101

    Article  Google Scholar 

  12. Muscatine, L., Science, 1967, vol. 156, pp. 516–519. https://doi.org/10.1126/science.156.3774.516

    Article  CAS  PubMed  Google Scholar 

  13. Glynn, P.W., Gilchrist, S.L., and Perez, M., Biol. Bull., 1985, vol. 168, pp. 276–284. https://doi.org/10.2307/1541240

    Article  CAS  Google Scholar 

  14. Harriott, V.J., Environ. Monit. Assess., 1993, vol. 25, pp. 131–139. https://doi.org/10.1007/BF00549134

    Article  CAS  PubMed  Google Scholar 

  15. Imbs, A.B. and Yakovleva, I.M., Coral Reefs, 2012, vol. 31, pp. 41–53. https://doi.org/10.1007/s00338-011-0817-4

    Article  Google Scholar 

  16. Tchernov, D., Gorbunov, M.Y., de Vargas, C., Yadav, S.N., Milligan, A.J., Haggblom, M., and Falkowski, P.G., Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 13 531–13 535. https://doi.org/10.1073/pnas.0402907101

    Article  Google Scholar 

  17. Diaz-Almeyda, E., Thome, P.E., El Hafidi, M., and Iglesias-Prieto, R., Coral Reefs, 2011, vol. 30, pp. 217–225.https://doi.org/10.1007/s00338-010-0691-5

  18. Kneeland, J., Hughen, K., Cervino, J., Hauff, B., and Eglinton, T., Coral Reefs, 2013, vol. 32, pp. 923–934. https://doi.org/10.1007/s00338-013-1076-3

    Article  Google Scholar 

  19. Rosset, S., Koster, G., Brandsma, J., Hunt, A.N., Postle, A.D., and D’Angelo, C., Coral Reefs, 2019, vol. 38, pp. 1241–1253. https://doi.org/10.1007/s00338-019-01865-x

    Article  Google Scholar 

  20. Sikorskaya, T.V., Ermolenko, E.V., and Imbs, A.B., J. Exp. Mar. Biol. Ecol., 2020, vol. 524, p. 151 295. https://doi.org/10.1016/j.jembe.2019.151295

    Article  Google Scholar 

  21. Meikle, P.J., Wong, G., Barlow, C.K., and Kingwell, B.A., Pharmacol. Ther., 2014, vol. 143, pp. 12–23. https://doi.org/10.1016/j.pharmthera.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  22. Wood, P.L., Unfried, G., Whitehead, W., Phillipps, A., and Wood, J.A., Schizophr. Res., 2015, vol. 161, pp. 506–510. https://doi.org/10.1016/j.schres.2014.11.032

    Article  PubMed  Google Scholar 

  23. Allemand, D. and Furla, P., C. R. Biol., 2018, vol. 341, pp. 276–280. https://doi.org/10.1016/j.crvi.2018.03.007

    Article  PubMed  Google Scholar 

  24. Kazandjian, A., Shepherd, V.A., Rodriguez-Lanetty, M., Nordemeier, W., Larkum, A.W.D., and Quinnell, R.G., Phycologia, 2008, vol. 47, pp. 294–306. https://doi.org/10.2216/PH07-23.1

    Article  Google Scholar 

  25. Wakefield, T.S., Farmer, M.A., and Kempf, S.C., Biol. Bull., 2000, vol. 199, pp. 76–84. https://doi.org/10.2307/1542709

    Article  CAS  PubMed  Google Scholar 

  26. Davy, S.K. and Turner, J.R., Biol. Bull., 2003, vol. 205, pp. 66–72. https://doi.org/10.2307/1543446

    Article  PubMed  Google Scholar 

  27. Babcock, R.C., Bull, G.D., Harrison, P.L., Heyward, A.J., Oliver, J.K., Wallace, C.C., and Willis, B.L., Mar. Biol. (Berlin), 1986, vol. 90, pp. 379–394. https://doi.org/10.1007/bf00428562

    Article  Google Scholar 

  28. Venn, A.A., Loram, J.E., and Douglas, AE., J. Exp. Bot., 2008, vol. 59, pp. 1069–1080. https://doi.org/10.1093/jxb/erm328

    Article  CAS  PubMed  Google Scholar 

  29. Davies, P.S., Mar. Biol. (Berlin), 1991, vol. 108, pp. 137–144. https://doi.org/10.1007/BF01313481

    Article  Google Scholar 

  30. Muscatine, L., Falkowski, P.G., Porter, J.W., and Dubinsky, Z., Proc. Biol. Sci., 1984, vol. 222, pp. 181–202. https://doi.org/10.1098/rspb.1984.0058

    Article  CAS  Google Scholar 

  31. Douglas, A.E., Mar. Pollut. Bull., 2003, vol. 46, pp. 385–392. https://doi.org/10.1016/s0025-326x(03)00037-7

    Article  CAS  PubMed  Google Scholar 

  32. Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A., and Hatziolos, M.E., Science, 2007, vol. 318, pp. 1737–1742. https://doi.org/10.1126/science.1152509

    Article  CAS  Google Scholar 

  33. Lesser, M.P., Annu. Rev. Physiol., 2006, vol. 68, pp. 253–278. https://doi.org/10.1146/annurev.physiol.68.040104.110001

    Article  CAS  PubMed  Google Scholar 

  34. Martindale, J.L. and Holbrook, N.J., J. Cell Physiol., 2002, vol. 192, pp. 1–15. https://doi.org/10.1002/jcp.10119

    Article  CAS  PubMed  Google Scholar 

  35. Fang, F.C., Nat. Rev. Microbiol., 2004, vol. 2, pp. 820–832. https://doi.org/10.1038/nrmicro1004

    Article  CAS  PubMed  Google Scholar 

  36. Perez, S. and Weis, V., J. Exp. Biol., 2006, vol. 209, pp. 2804–2810. https://doi.org/10.1242/jeb.02309

    Article  CAS  PubMed  Google Scholar 

  37. Gruenberg, J. and van der Goot, F.G., Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 495–504. https://doi.org/10.1038/nrm1959

    Article  CAS  PubMed  Google Scholar 

  38. Dunn, S.R., Thomason, J.C., Le Tissier, M.D.A., and Bythell, J.C., Cell Death Differ., 2004, vol. 11, pp. 1213–1222. https://doi.org/10.1038/sj.cdd.4401484

    Article  CAS  Google Scholar 

  39. Strychar, K.B., Sammarco, P.W., and Piva, T.J., Phycologia, 2004, vol. 43, pp. 768–777. https://doi.org/10.2216/i0031-8884-43-6-768.1

    Article  Google Scholar 

  40. Sammarco, P.W. and Strychar, K.B., PLoS One, 2013, vol. 8, e54 989. https://doi.org/10.1371/journal.pone.0054989

    Article  CAS  Google Scholar 

  41. Weis, V.M., J. Exp. Biol., 2008, vol. 211, pp. 3059–3066. https://doi.org/10.1242/jeb.009597

    Article  CAS  PubMed  Google Scholar 

  42. Dunn, S.R., Schnitzler, C.E., and Weis, V.M., Proc. R. Soc. B: Biol. Sci., 2007, vol. 274, pp. 3079–3085. https://doi.org/10.1098/rspb.2007.0711

    Article  Google Scholar 

  43. Chen, M.C., Hong, M.C., Huang, Y.S., Liu, M.C., Cheng, Y.M., and Fang, L.S., Biochem. Biophys. Res. Commun., 2005, vol. 338, pp. 1607–1616. https://doi.org/10.1016/j.bbrc.2005.10.133

    Article  CAS  PubMed  Google Scholar 

  44. Boya, P., Gonzalez-Polo, R.A., Casares, N., Perfettini, J.L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., and Kroemer, G., Mol. Cell. Biol., 2005, vol. 25, pp. 1025–1040. https://doi.org/10.1128/mcb.25.3.1025-1040.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mueller, C.E., Larsson, A.I., Veuger, B., Middelburg, J.J., and van Oevelen, D., Biogeosciences, 2014, vol. 11, pp. 123–133. https://doi.org/10.5194/bg-11-123-2014

    Article  Google Scholar 

  46. Papina, M., Meziane, T., and van Woesik, R., Comp. Biochem. Physiol. B, 2003, vol. 135, pp. 533–537. https://doi.org/10.1016/s1096-4959(03)00118-0

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigues, L.J., Grottoli, A.G., and Pease, T.K., J. Exp. Mar. Biol. Ecol., 2008, vol. 358, pp. 136–143. https://doi.org/10.2307/4502342

    Article  CAS  Google Scholar 

  48. Seemann, J., Sawall, Y., Auel, H., and Richter, C., Lipids, 2013, vol. 48, pp. 275–286. https://doi.org/10.1007/s11745-012-3747-1

    Article  CAS  PubMed  Google Scholar 

  49. Teece, M.A., Estes, B., Gelsleichter, E., and Lirman, D., Limnol. Oceanogr., 2011, vol. 56, pp. 1285–1296. https://doi.org/10.4319/lo.2011.56.4.1285

    Article  CAS  Google Scholar 

  50. Meyers, P.A., in Proceedings of Third International Coral Reef Symposium 1, 1977, pp. 529–536.

  51. Imbs, A.B., Demidkova, D.A., and Dautova, T.N., Mar. Biol. (Berlin), 2016, vol. 163, p. 202. https://doi.org/10.1007/s00227-016-2974-z

    Article  CAS  Google Scholar 

  52. Imbs, A.B., Yakovleva, I.M., and Pham, L.Q., Fish. Sci., 2010, vol. 76, pp. 375–380. https://doi.org/10.1007/s12562-009-0213-y

    Article  CAS  Google Scholar 

  53. Imbs, A.B., Russ. J. Mar. Biol., 2013, vol. 3, pp. 153–168. https://doi.org/10.1134/S1063074013030061

    Article  CAS  Google Scholar 

  54. Imbs, A.B., Dang, L.P.T., Rybin, V.G., Nguyen, N.T., and Pham, L.Q., Biochem. Anal. Biochem., 2015, vol. 4, p. 205. https://doi.org/10.4172/2161-1009.1000205

    Article  CAS  Google Scholar 

  55. Imbs, A.B., Dang, L.P.T., Rybin, V.G., and Svetashev, V.I., Lipids, 2015, vol. 50, pp. 575–589. https://doi.org/10.1007/s11745-015-4021-0

    Article  CAS  PubMed  Google Scholar 

  56. Imbs, A.B. and Dang, L.T.P., Russ. J. Mar. Biol., 2017, vol. 43, pp. 239–244. https://doi.org/10.1134/s1063074017030051

    Article  CAS  Google Scholar 

  57. Imbs, A.B., Dang, L.P.T., and Nguyen, K.B., PLoS One, 2019, vol. 14, p. 22. https://doi.org/10.1371/journal.pone.0215759

    Article  CAS  Google Scholar 

  58. Vitova, M., Goecke, F., Sigler, K., and Rezanka, T., Algal Res., 2016, vol. 13, pp. 218–226. https://doi.org/10.1016/j.algal.2015.12.005

    Article  Google Scholar 

  59. Rybin, V.G., Imbs, A.B., Demidkova, D.A., and Ermolenko, E.V., Chem. Phys. Lipids, 2017, vol. 202, pp. 55–61. https://doi.org/10.1016/j.chemphyslip.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  60. Garrett, T.A., Schmeitzel, J.L., Klein, J.A., Hwang, J.J., and Schwarz, J.A., PLoS One, 2013, vol. 8, e57 975. https://doi.org/10.1371/journal.pone.0057975

    Article  CAS  Google Scholar 

  61. Tang, C.H., Lin, C.Y., Lee, S.H., and Wang, W.H., Aquat. Toxicol., 2017, vol. 187, pp. 72–81. https://doi.org/10.1016/j.aquatox.2017.03.021

    Article  CAS  PubMed  Google Scholar 

  62. Tang, C.H., Lin, C.Y., Sun, P.P., Lee, S.H., and Wang, W.H., Sci. Total Environ., 2018, vol. 627, pp. 571–578. https://doi.org/10.1016/j.scitotenv.2018.01.276

    Article  CAS  PubMed  Google Scholar 

  63. Tang, C.H., Shi, S.H., Lin, C.Y., Li, H.H., and Wang, W.H., Sci. Total Environ., 2019, vol. 648, pp. 1275–1283. https://doi.org/10.1016/j.scitotenv.2018.08.296

    Article  CAS  PubMed  Google Scholar 

  64. Sikorskaya, T.V. and Imbs, A.B., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 712–723. https://doi.org/10.1134/s1068162019010151

    Article  CAS  Google Scholar 

  65. Sikorskaya, T.V., Chem. Nat. Compd., 2020, vol. 56, pp. 44–49. https://doi.org/10.1007/s10600-020-02940-4

    Article  CAS  Google Scholar 

  66. Carballeira, N.M., Miranda, C., and Rodriguez, A.D., Comp. Biochem. Physiol., vol. 131, pp. 83–87. https://doi.org/10.1016/s1096-4959(01)00495-x

  67. Imbs, A.B., Demina, O.A., and Demidkova, D.A., Lipids, 2006, vol. 41, pp. 721–725. https://doi.org/10.1007/s11745-006-5023-8

    Article  CAS  PubMed  Google Scholar 

  68. Vysotskii, M.V. and Svetashev, V.I., Biochim. Biophys. Acta, 1991, vol. 1083, pp. 161–165. https://doi.org/10.1016/0005-2760(91)90037-i

    Article  CAS  PubMed  Google Scholar 

  69. Imbs, A.B., Demidkova, D.A., Dautova, T.N., and Latyshev, N.A., Lipids, 2009, vol. 44, pp. 325–335. https://doi.org/10.1007/s11745-008-3266-2

    Article  CAS  PubMed  Google Scholar 

  70. Imbs, A.B. and Latyshev, N.A., J. Mar. Biol. Assoc. U.K., 2012, vol. 92, pp. 1341–1347. https://doi.org/10.1017/s0025315411001226

    Article  CAS  Google Scholar 

  71. Imbs, A.B., Latyshev, N.A., Zhukova, N.V., and Dautova, T.N., Comp. Biochem. Physiol. B, 2007, vol. 148, pp. 314–321. https://doi.org/10.1016/j.cbpb.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  72. Bosh, T.V. and Long, P.Q., Russ. J. Mar. Biol., 2017, vol. 43, pp. 471–478. https://doi.org/10.1134/s1063074017060049

    Article  CAS  Google Scholar 

  73. Chen, H.K., Wang, L.H., Chen, W.N.U., Mayfield, A.B., Levy, O., Lin, C.S., and Chen, C.S., Sci. Rep., 2017, vol. 7, p. 13. https://doi.org/10.1038/s41598-017-02722-z

    Article  CAS  Google Scholar 

  74. Athenstaedt, K. and Daum, G., Eur. J. Biochem., 1999, vol. 266, pp. 1–16. https://doi.org/10.1046/j.1432-1327.1999.00822.x

    Article  CAS  PubMed  Google Scholar 

  75. Magnusson, C.D. and Haraldsson, G.G., Chem. Phys. Lipids, 2011, vol. 164, pp. 315–340. https://doi.org/10.1016/j.chemphyslip.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  76. Imbs, A.B., Yakovleva, I.M., Latyshev, N.A., and Fam, L.K., Russ. J. Mar. Biol., 2010, vol. 36, pp. 452–457. https://doi.org/10.1134/S1063074010060076

    Article  CAS  Google Scholar 

  77. Oku, H., Yamashiro, H., Onaga, K., Sakai, K., and Iwasaki, H., Coral Reefs, 2003, vol. 22, pp. 83–85. https://doi.org/10.1007/s00338-003-0279-4

    Article  Google Scholar 

  78. Carballeira, N.M. and Reyes, M., J. Nat. Prod., 1995, vol. 58, pp. 1689–1694. https://doi.org/10.1021/np50125a007

    Article  CAS  PubMed  Google Scholar 

  79. Harland, A.D., Navarro, J.C., Davies, P.S., and Fixter, L.M., Mar.Biol. (Berlin), 1993, vol. 117, pp. 113–117. https://doi.org/10.1007%2FBF00346432

    Google Scholar 

  80. Latyshev, N.A., Naumenko, N.V., Svetashev, V.I., and Latypov, Y.Y., Mar. Ecol. Progr. Ser., 1991, vol. 76, pp. 295–301. https://doi.org/10.3354/meps076295

    Article  CAS  Google Scholar 

  81. Imbs, A.B., Demidkova, D.A., Latypov, Y.Y., and Pham, L.Q., Lipids, 2007, vol. 42, pp. 1035–1046. https://doi.org/10.1007/s11745-007-3109-6

    Article  CAS  PubMed  Google Scholar 

  82. Imbs, A.B., Biochem. Syst. Ecol., 2014, vol. 54, pp. 213–218. https://doi.org/10.1007/s11745-015-4021-0

    Article  CAS  Google Scholar 

  83. Tang, C.H., Ku, P.C., Lin, C.Y., Chen, T.H., Lee, K.H., Lee, S.H., and Wang, W.H., Mar. Biotechnol., 2015, vol. 17, pp. 633–643. https://doi.org/10.1007/s10126-015-9645-9

    Article  CAS  Google Scholar 

  84. Patton, J.S., Abraham, S., and Benson, A.A., Mar. Biol. (Berlin), 1977, vol. 44, pp. 235–247. https://doi.org/10.1007/BF00387705

    Article  CAS  Google Scholar 

  85. Bishop, D.G. and Kenrick, J.R., Lipids, 1980, vol. 15, pp. 799–804. https://doi.org/10.1007/BF02534368

    Article  CAS  PubMed  Google Scholar 

  86. Chen, H.-K., Song, S.-N., Wang, L.-H., Mayfield, A.B., Chen, Y.-J., Chen, W.-N.U., and Chen, C.-S., PLoS One, 2015, vol. 10, e0132 519. https://doi.org/10.1371/journal.pone.0132519

    Article  CAS  Google Scholar 

  87. Flaim, G., Obertegger, U., and Guella, G., Hydrobiologia, 2012, vol. 698, pp. 285–293. https://doi.org/10.1007/s10750-012-1070-8

    Article  CAS  Google Scholar 

  88. Li-Beisson, Y., Thelen, J.J., Fedosejevs, E., and Harwood, J.L., Prog. Lipid Res., 2018, vol. 74, pp. 31–68. https://doi.org/10.1016/j.plipres.2019.01.003

    Article  CAS  Google Scholar 

  89. Kobayashi, K., J. Plant Res., 2016, vol. 129, pp. 565–580. https://doi.org/10.1007/s10265-016-0827-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leblond, J.D., Dodson, J., and Dahmen, J.L., Eur. J. Phycol., 2013, vol. 48, pp. 309–317. https://doi.org/10.1080/09670262.2013.833297

    Article  CAS  Google Scholar 

  91. Imbs, A.B., Rybin, V.G., Kharlamenko, V.I., Dang, L.P.T., Nguyen, N.T., Pham, K.M., and Pham, L.Q., Russ. J. Mar. Biol., 2015, vol. 41, pp. 461–467. https://doi.org/10.1134/S1063074015060048

    Article  CAS  Google Scholar 

  92. Canavate, J.P., Armada, I., Rios, J.L., and Hachero-Cruzado, I., Phytochemistry, 2016, vol. 124, pp. 68–78. https://doi.org/10.1016/j.phytochem.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  93. Khotimchenko, S.V., Lipidy morskikh vodoroslei-makrofitov i trav (Lipids of Marine Microphytic Algae and Herbs), Vladivostok: Dal’nauka, 2003.

  94. Flaim, G., Obertegger, U., Anesi, A., and Guella, G., Freshwater Biol., 2014, vol. 59, pp. 985–997. https://doi.org/10.1111/fwb.12321

    Article  CAS  Google Scholar 

  95. Leblond, J.D., Khadka, M., Duong, L., and Dahmen, J.L., Phycol. Res., 2015, vol. 63, pp. 219–230. https://doi.org/10.1111/pre.12093

    Article  CAS  Google Scholar 

  96. Papina, M., Meziane, T., and van Woesik, R., Comp. Biochem. Phys., vol. 147, pp. 583–589. https://doi.org/10.1016/j.cbpb.2007.02.011

  97. Dormann, P. and Benning, C., Trends Plant Sci., 2002, vol. 7, pp. 112–118. https://doi.org/10.1016/s1360-1385(01)02216-6

    Article  CAS  PubMed  Google Scholar 

  98. Bochkov, V., Gesslbauer, B., Mauerhofer, C., Philippova, M., Erne, P., and Oskolkova, O.V., Free Radic. Biol. Med., 2016, vol. 111, pp. 6–24. https://doi.org/10.1016/j.freeradbiomed.2016.12.034

    Article  CAS  PubMed  Google Scholar 

  99. Serbulea, V., DeWeese, D., and Leitinger, N., Free Radic. Biol. Med., 1991, vol. 111, pp. 156–168. https://doi.org/10.1016/j.freeradbiomed.2017.02.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sikorskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with the use of humans as objects of research.

Conflict of Interests

The authors state that there is no conflict of interest.

Additional information

Translated by A. Levina

Abbreviations: HPLC, high performance liquid chromatography; DGDG, digalactozyldiacylglycerols; FA, fatty acids; CAEP, ceramid aminoethylphosphonate; MADAG, monoalkyldiacylglycerols; MGDG, monogalactosyldiacylglycerols; MC/MC, tandem mass spectrometry; PUFA, polyunsaturated fatty acids; SQDG, sulfoquinovosyldiacylglycerols; TG, triacylglycerols; TPFA, tetracosapolyenoic fatty acids; PL, phospholipids; PI, phosphatidylinositol; PS, phosphatidylserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; LPC, lysophosphatidylcholine; WE, wax esters; APCI, atmospheric pressure chemical ionization; ESI, electric spray ionization.

Corresponding author: phone: +7 (423) 231-09-05; fax: +7(423)2310905; e-mail: miss.tatyanna@yandex.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikorskaya, T.V., Imbs, A.B. Coral Lipidomes and Their Changes during Coral Bleaching. Russ J Bioorg Chem 46, 643–656 (2020). https://doi.org/10.1134/S1068162020050234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020050234

Keywords:

Navigation