Skip to main content
Log in

Study of Thermochemical Transformations of Bast of Birch Bark, Structure and Properties of the Produced Porous Carbon Materials

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The porous structure and sorption properties of carbon materials produced by thermochemical activation of the bast of birch bark with potassium hydroxide at 800°C have been studied. The effect of the amount of introduced KOH on the specific surface area of carbon materials obtained from bast was established. The selection of the optimal conditions for the preliminary carbonization of the bast was carried out, providing after thermal activation with KOH the formation of porous carbon materials with a specific surface of up to 2469 m2 g–1, a total pore volume of up to 1.085 cm3 g–1, a micropore volume of up to 0.84 cm3 g–1, and an average size pores less than 2.0 nm. It is shown that preliminary carbonization of bast at 500–580°С and subsequent activation with KOH at 800°С shifts the pore distribution in the resulting carbon materials towards smaller sizes (0.5–1.0 nm). It was found that carbon materials produced from heat-treated birch bast have a sorption activity for benzene, which exceeds the performance of foreign industrial carbon sorbents by 2.4 times and domestic active carbons of SKT-3 and SKT-10 grades by 3.4 times. Pre-carbonization of birch bast increases the yield of porous carbon materials by a factor of 3–4 compared to their yield when using untreated bast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov, B.N., Levdanskii, V.A., and Kuznetsova, S.A., Khimicheskie produkty iz drevesnoi kory (Chemical Products from Tree Bark), Krasnoyarsk: Sib. Feder. Univ., 2012.

    Google Scholar 

  2. Carmo, F., Miranda, I., Quilhó, T., Sousa, V.B., Cardoso, S., Carvalho, A.M., Carmo, F.H.,D.J., Latorraca, J.V.F., and Pereira, H., J. Wood Chem. Technol., 2016, vol. 36, no. 5, pp. 305–317. https://doi.org/10.1080/02773813.2016

    Article  CAS  Google Scholar 

  3. Kuznetsov, B.N., Chesnokov, N.V., Ivanov, I.P., Kuznetsova, S.A., and Ivanchenko, N.M., Solid Fuel Chem., 2015, vol. 49, no. 5, pp. 278–288. https://doi.org/10.3103/S0361521915050067

    Article  CAS  Google Scholar 

  4. Burne, C.E. and Nagle, D.C., Carbon, 1997, no. 35, pp. 259–266.

    Article  Google Scholar 

  5. Activated Carbon Surfaces in Environmental Remediation, Bandosz, T.J., Ed., Amsterdam: Elsevier Ltd., 2006.

    Google Scholar 

  6. Mikova, N.M., Chesnokov, N.V., Ivanov, I.P., and Zhizhaev, A.M. , Russ. J. Appl. Chem., 2013, vol. 86, no. 10, pp. 1526–1536. https://doi.org/10.1134/S1070427213100108 

    Article  CAS  Google Scholar 

  7. Fierro, V., Torne-Fernandez, V., Celzard, A., Micropor. Mesopor. Mater., 2007, vol. 101, pp. 419–431. https://doi.org/10.1016/j.micromeso.2006.12.004

    Article  CAS  Google Scholar 

  8. Yong, Xiao, Hanwu, Dong, Chao, Long, Mingtao, Zheng, Bingfu, Lei, Haoran, Zhang, and Yingliang, Liu, Int. J. Hydrogen Energy, 2014, vol. 39, no. 22, pp. 11661–11667. https://doi.org/10.1016/j.ijhydene.2014.05.134

    Article  CAS  Google Scholar 

  9. Dubinin, M.M., Carbon, 1989, vol. 27, no. 3, pp. 457–467.

    Article  CAS  Google Scholar 

  10. Tarazona, P., Surf. Sci., 1995, vol. 331–333, pp. 989–994.

    Article  Google Scholar 

  11. Strezov, V., Evans, T.J., and Nelson, R.E., Biomass and Bioenergy: New Research, Brenes, M.D., Ed., New York: Nova Sci., 2006.

    Google Scholar 

  12. Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L., and Changhou, L., Carbon, 2005, vol. 43, no. 11, pp. 2295–2301. https://doi.org/10.1016/j.carbon.2005.04.009

    Article  CAS  Google Scholar 

  13. Maryandyshev, P., Chernov, A., Lyubov, V., Trouvé, G., Brillard, A., and Brilhac, J.-F., J. Therm. Anal Calorim., 2015, vol. 122, no. 2, pp. 963–967. https://doi.org/10.1007/s10973-015-4798-3

    Article  CAS  Google Scholar 

  14. Kocaefe, D., Poncsak, S., and Boluk, Y., BioResources., 2008, vol. 3, no. 2, pp. 517–537.

    Google Scholar 

  15. Stefanidis, S.D., Kalogiannis, K.G., Iliopoulou, E.F., Michailof, Ch.M., Pilavachi, P.A., and Lappas, A.A., J. Anal. Appl. Pyrol., 2014, vol. 105, pp. 143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  CAS  Google Scholar 

  16. Kijima, M., Hirukawa, T., Hanawa, F., and Hata, T., J. Bioresource Technol., 2011, vol. 102, pp. 6279–6285. https://doi.org/10.1016/j.biortech.2011.03.023

    Article  CAS  Google Scholar 

  17. Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.-K., Jung, J., and Hyun, S. , Bioresource Technol., 2013, vol. 148, pp. 196–201. https://doi.org/10.1016/j.biortech.2013.08.135

    Article  CAS  Google Scholar 

  18. Wang, Sh., Guo, X., Wang, K., and Luo, Zh., J. Anal. Appl. Pyrol., 2011, vol. 91, pp. 183–189. https://doi.org/10.1016/j.jaap.2011.02.006

    Article  CAS  Google Scholar 

  19. Yu, H., Zeshen, Zh., and Chen, D., Fuel, 2014, vol. 118, pp. 250–256. https://doi.org/10.1016/j.fuel.2013.10.080

    Article  CAS  Google Scholar 

  20. Karklin’, V.B., Khimiya Drevesiny, 1971, no. 7, pp. 83–93.

    Google Scholar 

  21. Pandey, K.K., J. Appl. Polym. Sci., 1999, vol. 71, no. 12, pp. 1969–1975.

    Article  CAS  Google Scholar 

  22. El-Hendawy, A.-N.A., J. Anal. Appl. Pyrol., 2006, no. 75, pp. 159–166. https://doi.org/10.1016/j.jaap.2005.05.004

    Article  CAS  Google Scholar 

  23. Asmadi, M., Kawamoto, H., Saka, S., J. Anal. Appl. Pyrol., 2011, vol. 92, pp. 88–98. https://doi.org/10.1016/j.jaap.2011.04.011

    Article  CAS  Google Scholar 

  24. Diaz-Teran, J., Nevskaia, D.M., Fierro, J.L.G., Lopez-Peinado, A.J., and Jerez, A., Micropor. Mesopor. Mater., 2003, vol. 60, pp. 173–181. https://doi.org/10.1016/S1387-1811(03)00338-X

    Article  CAS  Google Scholar 

  25. Cooke, N.E., Fuller, O.M., and Gaikwad, R.P., Fuel, 1986, vol. 65, no. 9, pp. 1254–1260. https://doi.org/10.1016/0016-2361(86)90238-3

    Article  CAS  Google Scholar 

  26. Guo, Y., Yu, K., Wang, Z., and Hu, H., Carbon, 2000, vol. 41, pp. 1645–1648. https://doi.org/10.1016/S0008-6223(03)00084-8

    Article  CAS  Google Scholar 

  27. Kim, J.S., Lee, Y.Y., and Kim, T.H., Bioresource Technol., 2016, vol. 199, pp. 42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  CAS  Google Scholar 

  28. Basta, A.N., Fierro, V., El-Saied, H., and Celzard, A., Bioresource Technol., 2009, vol. 100, pp. 3941–3947. https://doi.org/10.1016/j.biortech.2009.02.028

    Article  CAS  Google Scholar 

  29. Marsh, H. and Rodriguez-Reinoso, F., Activated Сarbon, Elsevier, London, UK, 2006, pp. 350–363.

    Google Scholar 

  30. Scherdel, C., Reichenauer, G., and Wiener, M., Micropor. Mesopor. Mater., 2010, vol. 132, no. 3, pp. 572–575. https://doi.org/10.1016/j.micromeso.2010.03.034

    Article  CAS  Google Scholar 

  31. Stoeckli, F. and Centeno, T.A., Adsorbtsiya, adsorbenty i adsorbtsionnye protsessy v nanoporistykh materialakh. Sb. monografii (Adsorption, Adsorbents and Adsorption Processes in Nanoporous Materials. Coll. Monographs), Tsivadze, A.Yu., Ed., Moscow: Granitsa, 2011.

    Google Scholar 

  32. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Acad. Press, 1982.

    Google Scholar 

  33. Carrot, P.J.M., Ribeiro Carrot, M.M.L., and Mourao, P.A.M., J. Anal. Appl. Pyrol., 2006, vol. 75, pp. 120–127. https://doi.org/10.1016/j.jaap.2005.04.013

    Article  CAS  Google Scholar 

  34. Krol, M., Gryglewicz, G., and Machnikowski, J., Fuel Proc. Tech., 2011, vol. 32, pp. 158–165. https://doi.org/10.1016/j.fuproc.2010.09.019

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Krasnoyarsk Regional Center for Collective Use of the Federal Research Center of the KSC SB RAS was used.

Funding

This work was carried out within the framework of the state assignment of the Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences (project AAAA-A17-117021310218-7) (V.46.4.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Mikova.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikova, N.M., Ivanov, I.P., Fetisova, O.Y. et al. Study of Thermochemical Transformations of Bast of Birch Bark, Structure and Properties of the Produced Porous Carbon Materials. Russ J Appl Chem 93, 1349–1358 (2020). https://doi.org/10.1134/S1070427220090062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220090062

Keywords:

Navigation