Skip to main content
Log in

Retention of Some Radionuclides on Soil in Site Selection for Nuclear Facility

  • Published:
Radiochemistry Aims and scope

Abstract

The mobility of several radionuclides in a soil sample from a potential site in Egypt is examined. The retention of 152,154Eu (as homologs of 241Am), 60Co, 137Cs, and 99Mo in the presence of chelating ligands in the soil sample and without them is studied. Four chelating agents, namely, ethylenediaminetetraacetic acid (EDTA), citric and oxalic acids (as the major degradation products of EDTA), and humic acid are chosen for this purpose. The radionuclide retention on the soil without chelating ligands decreases in the order Co(II) > Eu(III) > Cs(I) > Mo(VI), with Kd equal to 11.38 mL/g for 99Mo and 1088 mL/g for 152,154Eu. The chelating ligands had little influence on the sorption of 60Co and 137Cs, but significantly decreased the retention of 152,154Eu owing to complexation. The soil sample on the potential nuclear site can act as a material for trapping the released radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Borai, E.H., Hilal, M.A., Attallah, M.F., and Shehata, F.A., Radiochim. Acta, 2008, vol. 96, pp. 441–447. https://doi.org/10.1524/ract.2008.1506

    Article  CAS  Google Scholar 

  2. Attallah, M.F., Youssef, M.A., and Imam, D.M., Radiochimica Acta, 2020, vol. 108, no. 2, pp. 137–149. https://doi.org/10.1515/ract-2019-3108

    Article  CAS  Google Scholar 

  3. Hamed, M.M., Holiel, M. and Ismail, Z.H., Radiochim. Acta, 2016, vol. 104, pp. 399–413.

    CAS  Google Scholar 

  4. Rizk, H.E., Attallah, M.F., and Ali, A.M.I., J. Radioanal. Nucl. Chem., 2017, vol. 314, pp. 2475–2487. https://doi.org/10.1007/s10967-017-5620-4

    Article  CAS  Google Scholar 

  5. Borai, E., Attallah, M., Koivula, R., Paajanen, A. and Harjula, R., Metall. Rev., 2012, vol. 33, no. 3, pp. 204–219. https://doi.org/10.1080/08827508.2011.562951

    Article  CAS  Google Scholar 

  6. Rizk, S.E., Hamed, M.M., and Nayl, A.A., Particul. Sci. Technol., 2016, vol. 34, pp. 716–724.

    Article  CAS  Google Scholar 

  7. Attallah, M.F., Rizk, S.E., and El Afifi, E.M., J. Radioanal. Nucl. Chem., 2018, vol. 317, pp. 933–945. https://doi.org/10.1007/s10967-018-5938-6

    Article  CAS  Google Scholar 

  8. Imam, D.M., Moussa, S.I., and Attallah, M.F., J. Radioanal. Nucl. Chem., 2019, vol. 319, pp. 997–1012. https://doi.org/10.1007/s10967-018-06403-7.

    Article  CAS  Google Scholar 

  9. Bekhit, H.M. and Hassan, E.A., Adv. Water Resources, 2005, vol. 28, p. 1320.

    Article  CAS  Google Scholar 

  10. Cha, H.J., Kang, M.J., Chung, G.H., Choi, G.S., and Lee, C.W., J. Radioanal. Nucl. Chem., 2006, vol. 267, pp. 349–355.

    Article  CAS  Google Scholar 

  11. Iurian, A.R., Phaneuf, M.O., and Mabit, L., Mobility and Bioavailability of Radionuclides in Soils, Berlin: Springer, 2015.

    Book  Google Scholar 

  12. Vandenhove, H., Gil-Garcia, C., Rigol, A., and Vidal, M., J. Environ. Radioact., 2009, vol. 100, pp. 697–703.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Q., Wu, J., Chen, W. and Li, X., Pedosphere, 2000, vol. 10, pp. 299–307.

    CAS  Google Scholar 

  14. El Afifi, E.M., Attallah, M.F., and Borai, E.H., J. Environ. Radioact., 2016, vol. 151, pp. 156–165.

    Article  CAS  PubMed  Google Scholar 

  15. Rabung, Th., Stumpf, Th., Geckeis, H., Klenze, R., and Kim, J.I., Radiochim. Acta, 2000, vol. 88, pp. 711–716.

    Article  CAS  Google Scholar 

  16. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1978.

    Google Scholar 

  17. Attallah, M.F., Elgazzar, A.H., Borai, E.H. and El-Tabl, A.S., J. Chem. Technol. Biotechnol., 2016, vol. 91, pp. 2243–2252.

    Article  CAS  Google Scholar 

  18. Liu, M.C., Chen, C.L., Hu, J., Wu, X.L., and Wang, X.K., J. Phys. Chem., 2011, vol. 115, pp. 25234−25240.

    CAS  Google Scholar 

  19. Hossein, F., Mohammad, M., Alireza, F. and Mozhgan, I., C. R. Chim., 2014, vol. 17, p. 108.

    Article  CAS  Google Scholar 

  20. Hu, R., Shao, D. and Wang, X., Polym. Chem., 2010, vol. 5, pp. 6207–6215.

    Article  CAS  Google Scholar 

  21. Lee, S., Anderson, P.R., Bunker, G.B., and Karanfil, C., Environ. Sci. Technol., 2004, vol. 38, pp. 5426–5431.

    Article  CAS  PubMed  Google Scholar 

  22. Mittal, A., Mittal, J., Malviya, A. and Gupta, V.K., J. Colloid Interface Sci., 2010, vol. 344, pp. 497–507

    Article  CAS  PubMed  Google Scholar 

  23. Hamed, M.M., Hassan, R.S., and Metwally, S.S., Process Saf. Environ. Prot., 2019, vol. 124, pp. 31–38.

    Article  CAS  Google Scholar 

  24. Hamed, M.M., Holiel, M. and Ahmed, M.I., Radiochim. Acta, 2016, vol. 104, no. 12, pp. 873–890.

    CAS  Google Scholar 

  25. Giannakopoulou, F., Haidouti, C., Chronopoulou, A., and Gasparatos, D., J. Hazard. Mater., 2007, vol. 149, pp. 553–556

    Article  CAS  PubMed  Google Scholar 

  26. Smedley, P.L., Cooper, D.M., Ander, E.L., Milne, C.J. and Lapworth, D.J., Appl. Geochem., 2014, vol. 40, pp. 144–154. https://doi.org/10.1016/j.apgeochem.2013.03.014

    Article  CAS  Google Scholar 

  27. Saleem, M., Afzal, M., Qadeer, R., and Hanif, J., J. Radioanal. Nucl. Chem., 1993, vol. 172, pp. 257–266.

    Article  CAS  Google Scholar 

  28. Moloukhia, H. and Ouda, S., J. Radiat. Res. Appl. Sci., 2010, vol. 3, pp. 1003–1013.

    Google Scholar 

  29. Mishra, M., Huang, J., and Balasubramanian, M.K., FEMS Microbiol. Rev., 2014, vol. 38, no. 2, pp. 213–227. https://doi.org/10.1111/1574-6976.12064

    Article  CAS  PubMed  Google Scholar 

  30. Zaki, A.A., El-Sofany, E.A., Kamal, H.F., Abdel Fattah, N. and Mekhemar, H.S., Arab. J. Nucl. Sci. Appl., 2013, vol. 46, no. 2, pp. 17–31.

    Google Scholar 

  31. Moloukhia, H., J. Radiat. Res. Appl. Sci., 2010, vol. 3, no. 2(A), pp. 329–341.

    Google Scholar 

  32. Attallah, M.F., Moussa, S.I., and Ahmed, I.M., J. Mol. Liq., 2019, vol. 277, pp. 323–329. https://doi.org/10.1016/j.molliq.2018.12.100

    Article  CAS  Google Scholar 

  33. Rizk, S.E. and Hamed, M.M., Desalin. Water Treat., 2015, vol. 56, pp. 1536–1546.

    Article  CAS  Google Scholar 

  34. Lee, C.P., Tsai, S.C., Wei, Y.Y., Teng, S.P., and Hsu, C.N., J. Radioanal. Nucl. Chem., 2008, vol. 275, pp. 115–119.

    Article  CAS  Google Scholar 

  35. Konopleva, I., Klemt, E., Konoplev, A., and Zibold, G., J. Environ. Radioact., 2009, vol. 100, pp. 315–321.

    Article  CAS  PubMed  Google Scholar 

  36. de Koning, A., Konoplev, A.V., and Comans, R.N., J. Appl. Geochem., 2007, vol. 22, no. 1, pp. 219–229.

    Article  CAS  Google Scholar 

  37. Marsh, S.F., Report of Los Alamos National Laboratory, 1995, no. LA-12943.

  38. Inglezakis, V.J., Zorpas, A.A., Loidzidou, M.D., and Grigoropoulou, H.P., Sep. Purif. Technol., 2005, vol. 46, pp. 202–207.

    Article  CAS  Google Scholar 

  39. Saito, A.M. and Moffett, W.J., Marine Chem., 2001, vol. 75, pp. 49–68.

    Article  CAS  Google Scholar 

  40. Kahle, M., Kleber, M., and Jahn, R., Org. Geochem., 2004, vol. 35, no. 3, pp. 269–276.

    Article  CAS  Google Scholar 

  41. Dumat, C. and Staunton, S., J. Environ. Radioact., 1999, vol. 46, no. 2, pp. 187–200

    Article  CAS  Google Scholar 

  42. Nakao, A., Thiry, Y., Funakawa, S., and Kosaki, T., Soil Sci. Plant Nutrit., 2008, vol. 54, no. 4, pp. 479-489.

    Article  CAS  Google Scholar 

  43. Stumm, W. and Morgan, J.J., Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters, New York: Wiley, 1981.

    Google Scholar 

  44. Kamel, N.H.M. and Navratil, J.D., J. Radioanal. Nucl. Chem., 2002, vol. 254, pp. 421–429.

    Article  CAS  Google Scholar 

  45. Ijagbemi, C.O., Baek, M-H., and Kim, D-S., J. Hazard. Mater., 2009, vol. 166, no. 1, pp. 538–546.

    Article  CAS  PubMed  Google Scholar 

  46. Hamed, M.M., Ahmed, I.M. and Holiel, M., Radiochim. Acta, 2019, vol. 107, no. 12, pp. 1161–1172.

    Article  CAS  Google Scholar 

  47. Holiel, M., Hamed, M.M., and El-Aryan, Y.F., J. Mol. Liq., 2017, vol. 242, pp. 722–731.

    Article  CAS  Google Scholar 

  48. Wang, J. and Zhuang, S., Rev. Environ. Sci. Biotechnol., 2019, vol. 18, pp. 231–269. https://doi.org/10.1007/s11157-019-09499-9(23458697

    Article  CAS  Google Scholar 

  49. Zou, Y., Wang, X., Ai, Y., Liu, Y., Li, J., Ji, Y., and Wang, X., Environ. Sci. Technol., 2016, vol. 50, pp. 3658−3667.

    Article  CAS  PubMed  Google Scholar 

  50. White, W.M., Geochemistry, Blackwell (UK): Wiley, 2013. https://doi.org/10.1017/S0016756813000708

    Google Scholar 

  51. Hayes, K.F. and Katz, E.L., Physics and Chemistry of Mineral Surfaces, Brady, P.V., Ed., Boca Raton, FL: CRC, 1996.

    Google Scholar 

  52. Sparks, D.L., Environmental Soil Chemistry, New York: Academic, 2003.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Imam or M. F. Attallah.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imam, D.M., Hamed, M.M. & Attallah, M.F. Retention of Some Radionuclides on Soil in Site Selection for Nuclear Facility. Radiochemistry 62, 658–666 (2020). https://doi.org/10.1134/S1066362220050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220050136

Keywords:

Navigation