Skip to main content
Log in

Sorption–Diffusion Model of 137Cs Absorption by Bottom Deposits of Lakes in the Reconstruction of 137Cs Fallout to Water Basins

  • Published:
Radiochemistry Aims and scope

Abstract

For 6 drainless lakes with average depths of ≤12 m, the fallout of 137Cs to water basins is reconstructed by using in calculation the sorption-diffusion model off radionuclide absorption by the bottom and the data of later (in years) monitoring of 137Cs. The model was used to calculate the concentration of 137Cs in water by the date of lake contamination, with the subsequent determination of the amount of 137Cs in the bulk of lake water. The manifold difference in the 137Cs fallout density to water basins (18–700 kBq/m2), time of 137Cs exposure, and dissimilar natural properties of lakes had no effect on the correction of estimating the 137Cs fallout: the calculated results agreed with the data on the content of 137Cs in coastal soils of water basins. By the dates of 137Cs monitoring in lake water (7, 16, 35 years after the contamination of a water basin) its amount in the water bulk did not exceed 0.18–6.6% of the amount fallen on the lake surface. The parameters of the 137Cs migration in the water–bottom system, the distribution (Kd) and diffusion (D) coefficient were 2000–4000 L/kg and 1.0–0.2 × 10–7 cm2/s, respectively. Silts as the main examples of the sorption properties of the water basin bottom determined for many years the contamination odd rainless lakes with 137Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Itogi izucheniya i opyt likvidatsii posledstvii avariinogo zagryazneniya territorii produktami deleniya urana (Results of Studies and Experience of Liquidation of the Consequences of an Emergency Contamination of the Territory by Uranium Fission Products), Burnazyan, A.I., Ed., Moscow: Energoatomizdat, 1990.

  2. Chernobyl’: Radioaktivnoe zagryaznenie prirodnykh sred (Chernobyl’; Radioactive Contamination of Natural Media), Izrael, A.I., Ed., Leningrad: Gidrometeoizdat, 1990.

  3. Kryshev, I.I. and Ryazantsev, E.P., Ekologicheskaya bezopasnost’ yaderno-energeticheskogo kompleksa Rossii (Ecological Safety of the Nuclear-Power Complex of Russia), Moscow: IzdAt, 2010.

    Google Scholar 

  4. AMAR Assessment 2009: Radioactivity in the Arctic, Oslo, 2010.

  5. Saxen, R. and Ilus, E., Sci. Total Environ., 2008, vol. 394, p. 349.

    Article  CAS  Google Scholar 

  6. Vakulovskii, S.M., Gaziev, Ya.I., Kolesnikova, L.V., Petrenko, G.I., Tertyshnik, E.G., and Uvarov, A.D., Atom. Energiya, 2006, vol. 100, no. 1, p. 68.

    Google Scholar 

  7. Vakulovskii, S.M., Kolesnikova, L.V., Tertyshnik, E.G., and Uvarov, A.D., Radiats. Biol., Radioekologiya, 2009, vol. 49, no. 2, p. 203.

    CAS  Google Scholar 

  8. Kryshev, I.I., Romanov, G.N., Isaeva, L.N., Kryshev, A.I., and Kholina, Yu.B., Abstract of Papers, Conf. on Probl. Radioekol. Pogranichn. Distsiplin, Zarechnyi, 2001, no. 4, p. 107.

  9. Trapeznikov, A.V., Yushkov, P.I., Nikolkin, V.N., Trapeznikova, V.N., Chebotina, M.Ya., and Ekidkin, A.A., Ekologiya, 2003, no. 3, p. 184.

  10. Prokhorov, V.M., Atom, 1966, no. 5, p. 4489.

  11. Bakunov, N.A., Bol’shiyanov, D.Yu., and Makarov, A.S., Radiochemistry, 2014, vol. 56, no. 3, p. 319. https://doi.org/10.1134/S1066362214030163

    Article  CAS  Google Scholar 

  12. Bakunov, N.A., Bol’shiyanov, D.Yu., and Makarov, A.S., Radiochemistry, 2017, vol. 59, no. 5, p. 540. https://doi.org/10.1134/S1066362217050174

    Article  CAS  Google Scholar 

  13. Dubasov, Yu.V., Evdokimov, A.V., Kamentsev, A.A., Saul’skii, A.V., and Cheplagina, O.V., Radiochemistry, 2011, vol. 53, no. 6, p. 662. https://doi.org/10.1134/S1066362211060166

    Article  CAS  Google Scholar 

  14. Bakunov, N.A, Bol’shiyanov, D.Yu., and Pravkin, S.A., Radiochemistry, 2019, vol. 61, no. 1, p. 122. https://doi.org/10.1134/S1066362219010181

    Article  CAS  Google Scholar 

  15. SanPin 2.61.2523-09. Normy radiatsionnoi bezopasnosti (NRB-99/2009) [Sanitary Rules and Regulations 2.61.2523-09, Radiation Safety Regulations (NRB-99/2009)], Moscow: Minzdrav Rossii, 2009.

  16. Romanov, G.N., Nikipelov, B.V., and Drozhko, E.K., Proc. Workshop on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl. Communities, EUR 13574, Luxemburg, Oct. 1–5, 1990.

  17. Andreeva, M.A., Ozera Srednego i Yuzhnogo Urala (Lakes of the Middle and Southern Urals), Chelyabinsk: YuUKI, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pravkin.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakunov, N.A., Bol’shiyanov, D.Y., Pravkin, S.A. et al. Sorption–Diffusion Model of 137Cs Absorption by Bottom Deposits of Lakes in the Reconstruction of 137Cs Fallout to Water Basins. Radiochemistry 62, 667–672 (2020). https://doi.org/10.1134/S1066362220050148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220050148

Keywords:

Navigation