Skip to main content
Log in

A Classification of Conformal Vector Fields on the Tangent Bundle

  • Published:
Ukrainian Mathematical Journal Aims and scope

Let (M,g) be a Riemannian manifold and let TM be its tangent bundle equipped with a Riemannian (or pseudo-Riemannian) lift metric derived from g. We give a classification of infinitesimal fiber-preserving conformal transformations on the tangent bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. T. K. Abbassi and M. Sarih, “Killing vector fields on tangent bundles with Cheeger–Gromoll metric,” Tsukuba J. Math., 27, 295–306 (2003).

    MathSciNet  MATH  Google Scholar 

  2. B. Bidabad, “Conformal vector fields on tangent bundle of Finsler manifolds,” Balkan J. Geom. Appl., 11, 28–35 (2006).

    MathSciNet  MATH  Google Scholar 

  3. A. Gezer, “On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric,” Proc. Indian Acad. Sci. Math. Sci., 119, 345–350 (2009).

    MathSciNet  MATH  Google Scholar 

  4. A. Gezer and L. Bilen, “On infinitesimal conformal transformations with respect to the Cheeger–Gromoll metric,” An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat, 20, No. 1, 113–127 (2012).

    MathSciNet  MATH  Google Scholar 

  5. A. Gezer and M. Özkan, “Notes on the tangent bundle with deformed complete lift metric,” Turkish J. Math., 38, 1038–1049 (2014).

    MathSciNet  MATH  Google Scholar 

  6. I. Hasegawa and K. Yamauchi, “Infinitesimal conformal transformations on tangent bundles with the lift metric I + II,” Sci. Math. Jap., 57, 129–139 (2003).

    MathSciNet  MATH  Google Scholar 

  7. E. Peyghan, H. Nasrabadi, and A. Tayebi, “The homogeneous lift to the (1, 1)-tensor bundle of a Riemannian metric,” Int. J. Geom. Meth. Mod. Phys., 10, No. 4, 1350006 (2013), 18 pp.

  8. E. Peyghan, H. Nasrabadi, and A. Tayebi, “Almost paracontact structure on tangent sphere bundle,” Int. J. Geom. Meth. Mod. Phys., 10, No. 9, 1320015 (2013), 11 pp.

  9. E. Peyghan, F. L. Nourmohammadi, and A. Tayebi, “Cheeger–Gromoll type metrics on the (1, 1)-tensor bundles,” J. Contemp. Math. Anal., 48(6), 59–70 (2013); English translation: Izv. Nats. Akad. Nauk Armenii Mat., 48, No. 6, 59–70 (2013).

  10. E. Peyghan, A. Tayebi, and C. Zhong, “Foliations on the tangent bundle of Finsler manifolds,” Sci. China Math., 55, No. 3, 647–662 (2011).

    MathSciNet  MATH  Google Scholar 

  11. E. Peyghan, A. Tayebi, and C. Zhong, “Horizontal Laplacian on tangent bundle of Finsler manifold with g-natural metric,” Int. J. Geom. Methods Mod. Phys., 9, No. 7, 1250061 (2012).

    MathSciNet  MATH  Google Scholar 

  12. E. Peyghan and A. Tayebi, “Finslerian complex and Kählerian structures,” Nonlin, Anal. Real World Appl., 11, 3021–3030 (2010).

    MATH  Google Scholar 

  13. E. Peyghan and A. Tayebi, “On Finsler manifolds whose tangent bundle has the g-natural metric,” Int. J. Geom. Methods Mod. Phys., 8, No. 7, 1593–1610 (2011).

    MathSciNet  MATH  Google Scholar 

  14. E. Peyghan and A. Tayebi, “Killing vector fields of horizontal Liouville type,” C. R. Math. Acad. Sci. Paris, 349, No. 3-4, 205–208 (2011).

    MathSciNet  MATH  Google Scholar 

  15. A. Tayebi and E. Peyghan, “On a class of Riemannian metrics arising from Finsler structures,” C. R. Math. Acad. Sci. Paris, 349, No. 5-6, 319–322 (2011).

    MathSciNet  MATH  Google Scholar 

  16. A. A. Salimov and A. Gezer, “On the geometry of the (1, 1)-tensor bundle with Sasaki type metric,” Chin. Ann. Math. Ser. B, 32, No. 3, 369–386 (2011).

    MathSciNet  MATH  Google Scholar 

  17. A. A. Salimov, M. Iscan, and K. Akbulut, “Notes on para-Norden–Walker 4-manifolds,” Int. J. Geom. Meth. Mod. Phys., 7, No. 8, 1331–1347 (2010).

    MathSciNet  MATH  Google Scholar 

  18. A. A. Salimov, K. Akbulut, and S. Aslanci, “A note on integrability of almost product Riemannian structures,” Arab. J. Sci. Eng. Sec. A, 34, No. 1, 153–157 (2009).

    MathSciNet  MATH  Google Scholar 

  19. S. Tanno, “Killing vectors and geodesic flow vectors on tangent bundles,” J. Reine Angew. Math., 282, 162–171 (1976).

    MathSciNet  MATH  Google Scholar 

  20. K. Yamauchi, “On infinitesimal conformal transformations of the tangent bundles with the metric I + III over Riemannian manifold,” Ann. Rep. Asahikawa Med. Coll., 16, 1–6 (1995).

    Google Scholar 

  21. K. Yamauchi, “On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds,” Ann. Rep. Asahikawa Med. Coll., 15, 1–10 (1994).

    Google Scholar 

  22. K. Yano and S. Ishihara, “Tangent and cotangent bundles: differential geometry,” in: Pure and Applied Mathematics., No. 16. Marcel Dekker, New York (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Latifi.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 5, pp. 694–704, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raei, Z., Latifi, D. A Classification of Conformal Vector Fields on the Tangent Bundle. Ukr Math J 72, 803–815 (2020). https://doi.org/10.1007/s11253-020-01823-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01823-9

Navigation