Skip to main content
Log in

Review: Friction and Lubrication with High Water Content Crosslinked Hydrogels

  • Review
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

As soft aqueous hydrogels have moved from new materials to the basis for real engineered devices in the last 20 years, their surface friction and lubrication are emerging as critical aspects of their function. The flexibility to alter and augment their mechanical and surface properties through control of the crosslinked 3D polymer networks has produced materials with diverse surface behaviors, even with the relatively simple composition of a single monomer and crosslink chemistry. Correspondingly with new understandings of the bulk behavior of hydrogels has been the identification of the mechanisms that govern the lubricity and frictional response under dynamic sliding conditions. Here we review these efforts, closely examining and identifying the internal and external influences that drive tribological response in high water content crosslinked hydrogels. The roles of surface structure, elasticity, contact response, charge, water interaction and water flow are addressed here as well as current synthesis and testing methods. We also collect open questions as well as the future needs to fully understand and exploit the surface properties of hydrogels for sliding performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors do not have original experimental data in this review. Thus this declaration is not applicable.

References

  1. Kirschner, C.M., Anseth, K.S.: Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931–944 (2013). https://doi.org/10.1016/j.actamat.2012.10.037

    Article  CAS  Google Scholar 

  2. Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter 2, 544 (2006). https://doi.org/10.1039/b603209p

    Article  CAS  Google Scholar 

  3. Analytics, C.: Web of Science Citation Report for topic words “Hydrogel lubrication.” (2020)

  4. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Elsevier, Amsterdam (2009)

    Google Scholar 

  5. Rosendahl, P.L., Drass, M., Felger, J., Schneider, J., Becker, W.: Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. Int. J. Solids Struct. 166, 32–46 (2019). https://doi.org/10.1016/j.ijsolstr.2019.01.030

    Article  CAS  Google Scholar 

  6. Naficy, S., Brown, H.R., Razal, J.M., Spinks, G.M., Whitten, P.G.: Progress toward robust polymer hydrogels. Aust. J. Chem. 64, 1007 (2011). https://doi.org/10.1071/CH11156

    Article  CAS  Google Scholar 

  7. Huang, T., Xu, H., Jiao, K., Zhu, L., Brown, H.R., Wang, H.: A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19, 1622–1626 (2007). https://doi.org/10.1002/adma.200602533

    Article  CAS  Google Scholar 

  8. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003). https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  9. Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata, T., Kawano, S.: High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14, 1124–1128 (2004). https://doi.org/10.1002/adfm.200305197

    Article  CAS  Google Scholar 

  10. Yang, C., Yin, T., Suo, Z.: Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids. 131, 43–55 (2019). https://doi.org/10.1016/j.jmps.2019.06.018

    Article  CAS  Google Scholar 

  11. Mihai, L.A., Goriely, A.: How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Royal Society Publishing (2017)

  12. Kim, B., Lee, S.B., Lee, J., Cho, S., Park, H., Yeom, S., Park, S.H.: A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for Chloroprene rubber. Int. J. Precis. Eng. Manuf. 13, 759–764 (2012). https://doi.org/10.1007/s12541-012-0099-y

    Article  Google Scholar 

  13. Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A 241, 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024

    Article  Google Scholar 

  14. Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 326, 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Article  CAS  Google Scholar 

  15. Faghihi, S., Karimi, A., Jamadi, M., Imani, R., Salarian, R.: Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater. Sci. Eng. C 38, 299–305 (2014). https://doi.org/10.1016/j.msec.2014.02.015

    Article  CAS  Google Scholar 

  16. Sasson, A., Patchornik, S., Eliasy, R., Robinson, D., Haj-Ali, R.: Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. J. Mech. Behav. Biomed. Mater. 8, 143–153 (2012). https://doi.org/10.1016/j.jmbbm.2011.12.008

    Article  CAS  Google Scholar 

  17. Van Der Sman, R.G.M.: Hyperelastic models for hydration of cellular tissue. Soft Matter 11, 7579–7591 (2015). https://doi.org/10.1039/c5sm01032b

    Article  Google Scholar 

  18. Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology (2017). https://doi.org/10.1016/j.biotri.2017.03.004

    Article  Google Scholar 

  19. Bhattacharyya, A., O’Bryan, C., Ni, Y., Morley, C.D., Taylor, C.R., Angelini, T.E.: Hydrogel compression and polymer osmotic pressure. Biotribology. 22, 100125 (2020). https://doi.org/10.1016/j.biotri.2020.100125

    Article  Google Scholar 

  20. Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017). https://doi.org/10.1016/j.biotri.2017.03.008

    Article  Google Scholar 

  21. Hu, Y., Zhao, X., Vlassak, J.J., Suo, Z.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010). https://doi.org/10.1063/1.3370354

    Article  CAS  Google Scholar 

  22. Stammen, J.A., Williams, S., Ku, D.N., Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001). https://doi.org/10.1016/S0142-9612(00)00242-8

    Article  CAS  Google Scholar 

  23. Li, J., Liu, H., Wang, C., Huang, G.: A facile method to fabricate hybrid hydrogels with mechanical toughness using a novel multifunctional cross-linker. RSC Adv. 7, 35311–35319 (2017). https://doi.org/10.1039/C7RA05645A

    Article  CAS  Google Scholar 

  24. Bai, R., Yang, Q., Tang, J., Morelle, X.P., Vlassak, J., Suo, Z.: Fatigue fracture of tough hydrogels. Extrem. Mech. Lett. 15, 91–96 (2017). https://doi.org/10.1016/j.eml.2017.07.002

    Article  Google Scholar 

  25. Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K.D., Stewart, D., Angelini, T., Sawyer, W.G., Perry, S.S.: Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol Lett (2017). https://doi.org/10.1007/s11249-016-0783-7

    Article  Google Scholar 

  26. Lin, P., Ma, S., Wang, X., Zhou, F.: Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015). https://doi.org/10.1002/adma.201405022

    Article  CAS  Google Scholar 

  27. Pitenis, A.A., Uruena, J.M., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, W.G.: Lubricity from polymer entangled networks on hydrogels. J. Tribol. 138, 042102 (2016)

    Article  Google Scholar 

  28. Li, C., Rowland, M.J., Shao, Y., Cao, T., Chen, C., Jia, H., Zhou, X., Yang, Z., Scherman, O.A., Liu, D.: Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater. 27, 3298–3304 (2015). https://doi.org/10.1002/adma.201501102

    Article  CAS  Google Scholar 

  29. Chen, Q., Zhu, L., Zhao, C., Wang, Q., Zheng, J.: A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25, 4171–4176 (2013). https://doi.org/10.1002/adma.201300817

    Article  CAS  Google Scholar 

  30. Gong, Z., Zhang, G., Zeng, X., Li, J., Li, G., Huang, W., Sun, R., Wong, C.: High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl. Mater. Interfaces. 8, 24030–24037 (2016). https://doi.org/10.1021/acsami.6b05627

    Article  CAS  Google Scholar 

  31. Gong, J.P.: Materials both tough and soft. Science 344, 161–162 (2014)

    Article  CAS  Google Scholar 

  32. Gaharwar, A.K., Peppas, N.A., Khademhosseini, A.: Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111, 441–453 (2014). https://doi.org/10.1002/bit.25160

    Article  CAS  Google Scholar 

  33. Liu, J., Chen, C., He, C., Zhao, J., Yang, X., Wang, H.: synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano (2012). https://doi.org/10.1021/nn302874v

    Article  Google Scholar 

  34. Pasqui, D., Atrei, A., Giani, G., De Cagna, M., Barbucci, R.: Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater. Lett. 65, 392–395 (2011). https://doi.org/10.1016/j.matlet.2010.10.053

    Article  CAS  Google Scholar 

  35. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)

    Article  CAS  Google Scholar 

  36. Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P., Schadler, L.S.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003). https://doi.org/10.1016/S0043-1648(03)00252-7

    Article  CAS  Google Scholar 

  37. Gong, J., Osada, Y.: Gel friction: a model based on surface repulsion and adsorption. J. Chem. Phys. 109, 8062–8068 (1998). https://doi.org/10.1063/1.477453

    Article  CAS  Google Scholar 

  38. Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick-slip friction reveals hydrogel lubrication mechanisms. Langmuir 34, 756–765 (2018). https://doi.org/10.1021/acs.langmuir.7b02834

    Article  CAS  Google Scholar 

  39. McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2018). https://doi.org/10.1016/j.biotri.2017.12.002

    Article  Google Scholar 

  40. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter 13, 428–435 (2017). https://doi.org/10.1039/c6sm02111e

    Article  CAS  Google Scholar 

  41. Delavoipière, J., Tran, Y., Verneuil, E., Heurtefeu, B., Hui, C.Y., Chateauminois, A.: Friction of poroelastic contacts with thin hydrogel films. Langmuir 34, 9617–9626 (2018). https://doi.org/10.1021/acs.langmuir.8b01466

    Article  CAS  Google Scholar 

  42. Cuccia, N.L., Pothineni, S., Wu, B., Méndez Harper, J., Burton, J.C.: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc. Natl. Acad. Sci. 117, 11247–11256 (2020). https://doi.org/10.1073/pnas.1922364117

    Article  CAS  Google Scholar 

  43. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). https://doi.org/10.1007/s11249-014-0308-1

    Article  CAS  Google Scholar 

  44. Gong, J.P., Kagata, G., Osada, Y.: Friction of gels 4 friction on charged gels. J. Phys. Chem. B. 103, 6007–6014 (1999). https://doi.org/10.1021/jp990256v

    Article  CAS  Google Scholar 

  45. Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter 10, 8955–8962 (2014). https://doi.org/10.1039/c4sm01728e

    Article  CAS  Google Scholar 

  46. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Gregory Sawyer, W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  47. Shoaib, T., Espinosa-Marzal, R.M.: Insight into the viscous and adhesive contributions to hydrogel friction. Tribol. Lett. 66, 1–14 (2018). https://doi.org/10.1007/s11249-018-1045-7

    Article  CAS  Google Scholar 

  48. Pitenis, A.A., Sawyer, W.G.: Lubricity of high water content aqueous gels. Tribol. Lett. 66, 1–7 (2018). https://doi.org/10.1007/s11249-018-1063-5

    Article  CAS  Google Scholar 

  49. Gaisinskaya, A., Ma, L., Silbert, G., Sorkin, R., Tairy, O., Goldberg, R., Kampf, N., Klein, J.: Hydration lubrication: exploring a new paradigm. Faraday Discuss. 156, 217 (2012). https://doi.org/10.1039/c2fd00127f

    Article  CAS  Google Scholar 

  50. Ma, L., Gaisinskaya-kipnis, A., Kampf, N., Klein, J.: Origins of hydration lubrication. Nat. Commun. 6, 1–6 (2015). https://doi.org/10.1038/ncomms7060

    Article  CAS  Google Scholar 

  51. Zhang, J., Peppas, N.A.: Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33, 102–107 (2000). https://doi.org/10.1021/ma991398q

    Article  CAS  Google Scholar 

  52. Tambe, N.S., Bhushan, B.: Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology. 15, 1561–1570 (2004). https://doi.org/10.1088/0957-4484/15/11/033

    Article  CAS  Google Scholar 

  53. Li, H., Choi, Y.S., Rutland, M.W., Atkin, R.: Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. J. Colloid Interface Sci. 563, 347–353 (2020). https://doi.org/10.1016/j.jcis.2019.12.045

    Article  CAS  Google Scholar 

  54. You, S., Li, J., Zhu, W., Yu, C., Mei, D., Chen, S.: Nanoscale 3D printing of hydrogels for cellular tissue engineering. J. Mater. Chem. B. 6, 2187–2197 (2018). https://doi.org/10.1039/c8tb00301g

    Article  CAS  Google Scholar 

  55. Liamas, E., Connell, S.D., Ramakrishna, S.N., Sarkar, A.: Probing the frictional properties of soft materials at the nanoscale. Nanoscale 12, 2292–2308 (2020)

    Article  CAS  Google Scholar 

  56. Mulakaluri, N., Persson, B.N.J.: Adhesion between elastic solids with randomly rough surfaces: Comparison of analytical theory with molecular-dynamics simulations. EPL. (2011). https://doi.org/10.1209/0295-5075/96/66003

    Article  Google Scholar 

  57. Pendyala, P., Kim, H.N., Grewal, H.S., Cho, I.J., Yoon, E.S.: Effect of capillary forces on the correlation between nanoscale adhesion and friction of polymer patterned surfaces. Tribol. Int. 114, 436–444 (2017). https://doi.org/10.1016/j.triboint.2017.04.045

    Article  CAS  Google Scholar 

  58. Ciavarella, M., Joe, J., Papangelo, A., Barber, J.R.: The role of adhesion in contact mechanics. J. R. Soc. Interface. (2019). https://doi.org/10.1098/rsif.2018.0738

    Article  Google Scholar 

  59. Kajiyama, T., Tanaka, K., Takahara, A.: Analysis of surface mobility in polystyrene films with monodisperse and bimodal molecular weights by lateral force microscopy. Polym. Sci. 42, 639–647 (2003)

    Article  Google Scholar 

  60. Fu, J., Li, B., Han, Y.: Molecular motions of different scales at thin polystyrene film surface by lateral force microscopy. J. Chem. Phys. (2005). https://doi.org/10.1063/1.1961228

    Article  Google Scholar 

  61. Tambe, N.S., Bhushan, B.: Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications. Ultramicroscopy (2005). https://doi.org/10.1016/J.ULTRAMIC.2005.06.050

    Article  Google Scholar 

  62. Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17, 5911–5916 (2001). https://doi.org/10.1021/la010330c

    Article  CAS  Google Scholar 

  63. Ramakrishna, S.N., Cirelli, M., Divandari, M., Benetti, E.M.: Effects of lateral deformation by thermoresponsive polymer brushes on the measured friction forces. Langmuir 33, 4164–4171 (2017). https://doi.org/10.1021/acs.langmuir.7b00217

    Article  CAS  Google Scholar 

  64. Nordgren, N., Rutland, M.W.: Tunable nanolubrication between dual-responsive polyionic grafts. Nano Lett. 9, 2984–2990 (2009). https://doi.org/10.1021/nl901411e

    Article  CAS  Google Scholar 

  65. Dehghani, E.S., Ramakrishna, S.N., Spencer, N.D., Benetti, E.M.: Controlled crosslinking is a tool to precisely modulate the nanomechanical and nanotribological properties of polymer brushes. Macromolecules 50, 2932–2941 (2017). https://doi.org/10.1021/acs.macromol.6b02409

    Article  CAS  Google Scholar 

  66. Solares, S.D.: Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions. Beilstein J. Nanotechnol. 7, 554–571 (2016). https://doi.org/10.3762/bjnano.7.49

    Article  CAS  Google Scholar 

  67. Li, K., Pandiyarajan, C.K., Prucker, O., Rühe, J.: On the lubrication mechanism of surfaces covered with surface-attached hydrogels. Macromol. Chem. Phys. 217, 526–536 (2016). https://doi.org/10.1002/macp.201500243

    Article  CAS  Google Scholar 

  68. Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir 21, 8643–8648 (2005). https://doi.org/10.1021/la050635h

    Article  CAS  Google Scholar 

  69. Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter 12, 6536–6546 (2016). https://doi.org/10.1039/C6SM00623J

    Article  CAS  Google Scholar 

  70. Kagata, G., Gong, P., Osada, Y.: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B. 106, 4596–4601 (2002). https://doi.org/10.1021/jp012380w

    Article  CAS  Google Scholar 

  71. Kim, J., Dunn, A.C.: Thixotropic mechanics in soft hydrated sliding interfaces. Tribol. Lett. (2018). https://doi.org/10.1007/s11249-018-1056-4

    Article  Google Scholar 

  72. Chan, E.P., Hu, Y., Johnson, P.M., Suo, Z., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492 (2012). https://doi.org/10.1039/c1sm06514a

    Article  CAS  Google Scholar 

  73. McGhee, E.O., Urueña, J.M., Pitenis, A.A., Sawyer, W.G.: Temperature-dependent friction of gemini hydrogels. Tribol. Lett. 67, 1–7 (2019). https://doi.org/10.1007/s11249-019-1229-9

    Article  CAS  Google Scholar 

  74. Murakami, T., Yarimitsu, S., Nakashima, K., Sakai, N., Yamaguchi, T., Sawae, Y., Suzuki, A.: Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: a review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229, 864–878 (2015). https://doi.org/10.1177/0954411915611160

    Article  Google Scholar 

  75. Murakami, T., Sakai, N., Yamaguchi, T., Yarimitsu, S., Nakashima, K., Sawae, Y., Suzuki, A.: Evaluation of a superior lubrication mechanism with biphasic hydrogels for artificial cartilage. Tribol. Int. 89, 19–26 (2015). https://doi.org/10.1016/j.triboint.2014.12.013

    Article  CAS  Google Scholar 

  76. Hu, Y., Suo, Z.: Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 25, 441–458 (2012). https://doi.org/10.1016/S0894-9166(12)60039-1

    Article  Google Scholar 

  77. Blum, M.M., Ovaert, T.C.: Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. J. Mech. Behav. Biomed. Mater. 14, 248–258 (2012). https://doi.org/10.1016/j.jmbbm.2012.06.009

    Article  CAS  Google Scholar 

  78. Oyen, M.L.: Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2014). https://doi.org/10.1179/1743280413Y.0000000022

    Article  CAS  Google Scholar 

  79. Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49, 371–378 (2013). https://doi.org/10.1007/s11249-012-0076-8

    Article  CAS  Google Scholar 

  80. Simmons, C.S., Ribeiro, A.J.S., Pruitt, B.L.: Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain. Lab Chip 13, 646–649 (2013). https://doi.org/10.1039/c2lc41110e

    Article  CAS  Google Scholar 

  81. Yu, Y., Yuk, H., Parada, G.A., Wu, Y., Liu, X., Nabzdyk, C.S., Youcef-Toumi, K., Zang, J., Zhao, X.: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. (2019). https://doi.org/10.1002/adma.201807101

    Article  Google Scholar 

  82. Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 60, 24–34 (2005). https://doi.org/10.1002/cm.20041

    Article  Google Scholar 

  83. Denisin, A.K., Pruitt, B.L.: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces. 8, 21893–21902 (2016). https://doi.org/10.1021/acsami.5b09344

    Article  CAS  Google Scholar 

  84. Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: Structure of surfaces and interfaces of poly(N, N-dimethylacrylamide) hydrogels. Langmuir 28, 12282–12287 (2012). https://doi.org/10.1021/la301417x

    Article  CAS  Google Scholar 

  85. Meier, Y.A., Zhang, K., Spencer, N.D., Simič, R.: Linking friction and surface properties of hydrogels molded against materials of different surface energies. Langmuir 35, 15805–15812 (2019). https://doi.org/10.1021/acs.langmuir.9b01636

    Article  CAS  Google Scholar 

  86. Gombert, Y., Simič, R., Roncoroni, F., Dübner, M., Geue, T., Spencer, N.D.: Structuring hydrogel surfaces for tribology. Adv. Mater. Interfaces. (2019). https://doi.org/10.1002/admi.201901320

    Article  Google Scholar 

  87. Bonyadi, S.Z., Atten, M., Dunn, A.C.: Self-regenerating compliance and lubrication of polyacrylamide hydrogels. Soft Matter 15, 8728–8740 (2019). https://doi.org/10.1039/c9sm01607d

    Article  CAS  Google Scholar 

  88. Persson, B.N.J., Scaraggi, M.: Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction. Tribol. Lett. 66, 1–6 (2018). https://doi.org/10.1007/s11249-017-0973-y

    Article  CAS  Google Scholar 

  89. Kamada, K., Furukawa, H., Kurokawa, T., Tada, T., Tominaga, T., Nakano, Y., Gong, J.P.: Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime. J. Phys. Condens. Matter. (2011). https://doi.org/10.1088/0953-8984/23/28/284107

    Article  Google Scholar 

  90. Wang, Z., Li, J., Liu, Y., Luo, J.: Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water. Mater. Des. 188, 108441 (2020). https://doi.org/10.1016/j.matdes.2019.108441

    Article  CAS  Google Scholar 

  91. Chaudhury, M.K., Whitesides, G.M.: Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991). https://doi.org/10.1021/la00053a033

    Article  CAS  Google Scholar 

  92. Shull, K.R.: Contact mechanics and the adhesion of soft solids, (2002)

  93. Lorenz, B., Krick, B.A., Mulakaluri, N., Smolyakova, M., Dieluweit, S., Sawyer, W.G., Persson, B.N.J.: Adhesion: role of bulk viscoelasticity and surface roughness. J. Phys. Condens. Matter 25, 225004 (2013). https://doi.org/10.1088/0953-8984/25/22/225004

    Article  CAS  Google Scholar 

  94. Greenwood, J.A., Johnson, K.L.: Oscillatory loading of a viscoelastic adhesive contact. J. Colloid Interface Sci. 296, 284–291 (2006). https://doi.org/10.1016/j.jcis.2005.08.069

    Article  CAS  Google Scholar 

  95. Shull, K.R., Ahn, D., Chen, W., Flanigan, C.M., Crosby, A.J.: Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys. 199, 489–511 (1998). https://doi.org/10.1002/(SICI)1521-3935(19980401)199:4%3c489:AID-MACP489%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  96. Aulin, C., Shchukarev, A., Lindqvist, J., Malmström, E., Wågberg, L., Lindström, T.: Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J. Colloid Interface Sci. 317, 556–567 (2008). https://doi.org/10.1016/j.jcis.2007.09.096

    Article  CAS  Google Scholar 

  97. Wahl, K.J., Asif, S.A.S., Greenwood, J.A., Johnson, K.L.: Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178–188 (2006). https://doi.org/10.1016/j.jcis.2005.08.028

    Article  CAS  Google Scholar 

  98. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: Friction, wear and lubrication at the atomic scale. Nature (1995). https://doi.org/10.1038/374607a0

    Article  Google Scholar 

  99. Roba, M., Duncan, E.G., Hill, G.A., Spencer, N.D., Tosatti, S.G.P.: Friction measurements on contact lenses in their operating environment. Tribol. Lett. 44, 387–397 (2011). https://doi.org/10.1007/s11249-011-9856-9

    Article  Google Scholar 

  100. Sterner, O., Aeschlimann, R., Zürcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: from coefficient of friction to sliding work. Tribol. Lett. 63, 1–13 (2016). https://doi.org/10.1007/s11249-016-0696-5

    Article  CAS  Google Scholar 

  101. McDonald, J.C., Whitesides, G.M.: Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002). https://doi.org/10.1021/ar010110q

    Article  CAS  Google Scholar 

  102. Abate, A.R., Lee, D., Do, T., Holtze, C., Weitz, D.A.: Glass coating for PDMS microfluidic channels by sol-gel methods. Lab Chip 8, 516–518 (2008). https://doi.org/10.1039/b800001h

    Article  CAS  Google Scholar 

  103. Rim, Y.S., Bae, S.-H., Chen, H., De Marco, N., Yang, Y.: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016). https://doi.org/10.1002/adma.201505118

    Article  CAS  Google Scholar 

  104. Crosby, A.J., Hageman, M., Duncan, A.: Controlling polymer adhesion with “pancakes”. Langmuir 21, 11738–11743 (2005). https://doi.org/10.1021/la051721k

    Article  CAS  Google Scholar 

  105. Shepherd, R.F., Stokes, A.A., Nunes, R.M.D., Whitesides, G.M.: Soft machines that are resistant to puncture and that self seal. Adv. Mater. 25, 6709–6713 (2013). https://doi.org/10.1002/adma.201303175

    Article  CAS  Google Scholar 

  106. Nalam, P.C., Gosvami, N.N., Caporizzo, M.A., Composto, R.J., Carpick, R.W.: Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Soft Matter 11, 8165–8178 (2015). https://doi.org/10.1039/c5sm01143d

    Article  CAS  Google Scholar 

  107. Nalam, P.C., Lee, H.S., Bhatt, N., Carpick, R.W., Eckmann, D.M., Composto, R.J.: Nanomechanics of pH-responsive, drug-loaded, bilayered polymer grafts. ACS Appl. Mater. Interfaces. 9, 12936–12948 (2017). https://doi.org/10.1021/acsami.6b14116

    Article  CAS  Google Scholar 

  108. Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules 44, 5344–5351 (2011). https://doi.org/10.1021/ma2006443

    Article  CAS  Google Scholar 

  109. Bhamla, M.S., Chai, C., Rabiah, N.I., Frostad, J.M., Fuller, G.G.: Instability and breakup of model tear films. Investig. Ophthalmol. Vis. Sci. 57, 949–958 (2016). https://doi.org/10.1167/iovs.15-18064

    Article  CAS  Google Scholar 

  110. Bhamla, M.S., Balemans, C., Fuller, G.G.: Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates. J. Colloid Interface Sci. 449, 428–435 (2015). https://doi.org/10.1016/j.jcis.2015.01.002

    Article  CAS  Google Scholar 

  111. Kandow, C.E., Georges, P.C., Janmey, P.A., Beningo, K.A.: Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Metods Cell Biol 83, 29–46 (2007)

    Article  CAS  Google Scholar 

  112. Wen, Q., Basu, A., Janmey, P.A., Yodh, A.G.: Non-affine deformations in polymer hydrogels. Soft Matter 8, 8039–8049 (2012)

    Article  CAS  Google Scholar 

  113. Yamamoto, T., Kurokawa, T., Ahmed, J., Kamita, G., Yashima, S., Furukawa, Y., Ota, Y., Furukawa, H., Gong, J.P.: In situ observation of a hydrogel-glass interface during sliding friction. Soft Matter 10, 5589–5596 (2014). https://doi.org/10.1039/c4sm00338a

    Article  CAS  Google Scholar 

  114. Schulze, K.D., Bennett, A.I., Marshall, S.L., Rowe, K.G., Dunn, A.C.: Real area of contact in a soft transparent interface by particle exclusion microscopy. ASME J. Tribol. 138, 041404 (2016)

    Article  Google Scholar 

  115. Pham, J.T., Schellenberger, F., Kappl, M., Butt, H.J.: From elasticity to capillarity in soft materials indentation. Phys. Rev. Mater. 1, 015602 (2017). https://doi.org/10.1103/PhysRevMaterials.1.015602

    Article  Google Scholar 

  116. Graham, B.T., Moore, A.C., Burris, D.L., Price, C.: Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthr. Cartil. 25, 2100–2107 (2017). https://doi.org/10.1016/j.joca.2017.08.014

    Article  CAS  Google Scholar 

  117. McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2017). https://doi.org/10.1016/j.biotri.2017.12.002

    Article  Google Scholar 

  118. Lee, D., Rahman, M.M., Zhou, Y., Ryu, S.: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684–9693 (2015). https://doi.org/10.1021/acs.langmuir.5b01267

    Article  CAS  Google Scholar 

  119. Bonyadi, S.Z., Atten, M., Dunn, A.C.: Self-regenerating compliance and lubrication of polyacrylamide hydrogels. Soft Matter (2019). https://doi.org/10.1039/c9sm01607d

    Article  Google Scholar 

  120. Urueña, J.M., Hart, S.M., Hood, D.L., McGhee, E.O., Niemi, S.R., Schulze, K.D., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Considerations for biotribometers: cells, gels, and tissues. Tribol. Lett. 66, 1–7 (2018). https://doi.org/10.1007/s11249-018-1094-y

    Article  CAS  Google Scholar 

  121. Pitenis, A.A., Urueña, J.M., McGhee, E.O., Hart, S.M., Reale, E.R., Kim, J., Schulze, K.D., Marshall, S.L., Bennett, A.I., Niemi, S.R., Angelini, T.E., Sawyer, W.G., Dunn, A.C.: Challenges and opportunities in soft tribology. Tribol. Mater. Surfaces Interfaces. 11, 180–186 (2017). https://doi.org/10.1080/17515831.2017.1400779

    Article  Google Scholar 

  122. Pitenis, A.A., Urueña, J.M., Hart, S.M., O’Bryan, C.S., Marshall, S.L., Levings, P.P., Angelini, T.E., Sawyer, W.G.: Friction-induced inflammation. Tribol. Lett. 66, 1–13 (2018). https://doi.org/10.1007/s11249-018-1029-7

    Article  CAS  Google Scholar 

  123. Hart, S.M., Degen, G.D., Urueña, J.M., Levings, P.P., Sawyer, W.G., Pitenis, A.A.: Friction-induced apoptosis. Tribol. Lett. 67, 1–12 (2019). https://doi.org/10.1007/s11249-019-1197-0

    Article  Google Scholar 

  124. McGhee, E.O., Hart, S.M., Urueña, J.M., Sawyer, W.G.: Hydration control of gel-adhesion and muco-adhesion. Langmuir 35, 15769–15775 (2019). https://doi.org/10.1021/acs.langmuir.9b02816

    Article  CAS  Google Scholar 

  125. Bonyadi, S.Z., Dunn, A.C.: Brittle or ductile? Abrasive wear of polyacrylamide hydrogels reveals load-dependent wear mechanisms. Tribol. Lett. 68, 1–14 (2020). https://doi.org/10.1007/s11249-019-1259-3

    Article  CAS  Google Scholar 

  126. Morrison, S., Sullivan, D.A., Sullivan, B.D., Sheardown, H., Schmidt, T.A.: Dose-dependent and synergistic effects of proteoglycan 4 on boundary lubrication at a human cornea-polydimethylsiloxane. Biointerface Eye Contact Lens Sci. Clin. Pract. 38, 27–35 (2012). https://doi.org/10.1097/ICL.0b013e31823f7041

    Article  Google Scholar 

  127. Korogiannaki, M., Samsom, M., Schmidt, T.A., Sheardown, H.: Surface-functionalized model contact lenses with a bioinspired proteoglycan 4 (PRG4)-grafted layer. ACS Appl. Mater. Interface 10, 30125–30136 (2018). https://doi.org/10.1021/acsami.8b09755

    Article  CAS  Google Scholar 

  128. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Gregory Sawyer, W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2014). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  129. Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta 44, 622–630 (2005). https://doi.org/10.1007/s00397-005-0444-5

    Article  CAS  Google Scholar 

  130. Tanaka, Y., Kuwabara, R., Na, Y.H., Kurokawa, T., Gong, J.P., Osada, Y.: Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B. 109, 11559–11562 (2005). https://doi.org/10.1021/jp0500790

    Article  CAS  Google Scholar 

  131. Kundu, S., Crosby, A.J.: Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5, 3963–3968 (2009). https://doi.org/10.1039/b909237d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for all researchers in this field and their contributions. SZB, ACD, MMH, and JK were supported by the National Science Foundation awards 1563087 and 1751945. KDS and SM were supported by Auburn University Samuel Ginn College of Engineering. Professor Nicholas D. Spencer is the inspiration for this updated review.

Funding

Authors SZB, ACD, MMH, and JK acknowledge support from the National Science Foundation (NSF) awards numbers 1563087 and 1751945. KDS and SM were supported by Auburn University Samuel Ginn College of Engineering.

Author information

Authors and Affiliations

Authors

Contributions

ACD and KDS outlined this work, wrote, and edited. SZB, MMH, JK, and SM wrote, prepared figures, and edited.

Corresponding author

Correspondence to Alison C. Dunn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest and no competing interests in writing this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonyadi, S.Z., Hasan, M.M., Kim, J. et al. Review: Friction and Lubrication with High Water Content Crosslinked Hydrogels. Tribol Lett 68, 119 (2020). https://doi.org/10.1007/s11249-020-01352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01352-3

Keywords

Navigation