Skip to main content
Log in

Influence of Hydrogen Bonding and Ionicity of Protic Ionic Liquids on Lubricating Steel–Steel and Steel–Aluminum Contacts: Potential Ecofriendly Lubricants and Additives

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Three ecofriendly protic ionic liquids (PILs), 2-hydroxyethylammonium 2-ethylhexanoate, 2-hydroxymethylammonium 2-ethylhexanoate, and 2-hydroxydimethylammonium 2-ethylhexanoate, with different extents of hydrogen bonding and ionicities, were synthesized and examined as neat lubricants and lubricant additives to a mineral oil (MO) under steel/steel and steel/aluminum contacts. The stability of each PIL–MO blend was observed and correlated to their individual structural features; their physicochemical and tribological properties were investigated and compared to a commercial mineral oil-based lubricant. The addition of any PIL to the mineral oil improved lubricity in steel/steel contact. In aluminum/steel contact, the PILs were studied as neat lubricants and additives showing different effects. The PIL with lower extent of hydrogen bonding but higher ionicity presented poor friction and led to higher wear as neat lubricant. However, as additive, this PIL prevented the intense tribo-corrosion reactions and generated a stable lubrication film that reduced friction; and was capable to form a protective layer on aluminum surface to avoid severe wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Holmberg, K., Andersson, P., Nylund, N.O., Mäkelä, K., Erdemir, A.: Global energy consumption due to friction in trucks and buses. Tribol. Int. 78, 94–114 (2014). https://doi.org/10.1016/j.triboint.2014.05.004

    Article  Google Scholar 

  2. Stern, D.I.: Energy and economic growth in the USA. Energy Econ. 15, 137–150 (1993). https://doi.org/10.1016/0140-9883(93)90033-N

    Article  Google Scholar 

  3. Tzanakis, I., Hadfield, M., Thomas, B., Noya, S.M., Henshaw, I., Austen, S.: Future perspectives on sustainable tribology. Renew. Sustain. Energy Rev. 16, 4126–4140 (2012). https://doi.org/10.1016/j.rser.2012.02.064

    Article  CAS  Google Scholar 

  4. Allmaier, H., Priestner, C., Sander, D.E., Reich, F.M.: Friction in automotive engines. In: Pihtili, H. (ed.) Tribology in engineering, pp. 1–36. InTech, London (2013)

    Google Scholar 

  5. Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022

    Article  Google Scholar 

  6. Kalin, M., Oblak, E., Akbari, S.: Evolution of the nano-scale mechanical properties of tribofilms formed from low- and high-SAPS oils and ZDDP on DLC coatings and steel. Tribol. Int. 96, 43–56 (2016). https://doi.org/10.1016/j.triboint.2015.12.013

    Article  CAS  Google Scholar 

  7. Huang, G., Yu, Q., Cai, M., Zhou, F., Liu, W.: Highlighting the effect of interfacial interaction on tribological properties of supramolecular gel lubricants. Adv. Mater. Interfaces. 3, 1–10 (2016). https://doi.org/10.1002/admi.201500489

    Article  CAS  Google Scholar 

  8. Bermúdez, M.D., Martínez-Nicolás, G., Carrión-Vilches, F.J.: Tribological properties of liquid crystals as lubricant additives. Wear 212, 188–194 (1997). https://doi.org/10.1016/S0043-1648(97)00152-X

    Article  Google Scholar 

  9. Guo, H., Chen, F., Liu, R., Iglesias, P.: Lubricating ability of magnesium silicate hydroxide-based nanopowder as lubricant additive in steel-steel and ceramic-steel contacts. Tribol. Trans. (2020). https://doi.org/10.1080/10402004.2019.1710312

    Article  Google Scholar 

  10. Del Sol, I., Gámez, A.J., Rivero, A., Iglesias, P.: Tribological performance of ionic liquids as additives of water-based cutting fluids. Wear 426–427, 845–852 (2019). https://doi.org/10.1016/j.wear.2019.01.109

    Article  CAS  Google Scholar 

  11. Gebretsadik, D.W., Hardell, J., Prakash, B.: Seizure behaviour of some selected Pb-free engine bearing materials under lubricated condition. Tribol. Int. 111, 265–275 (2017). https://doi.org/10.1016/j.triboint.2017.03.021

    Article  CAS  Google Scholar 

  12. Arcifa, A., Rossi, A., Espinosa-Marzal, R.M., Spencer, N.D.: Influence of environmental humidity on the wear and friction of a silica/silicon tribopair lubricated with a hydrophilic ionic liquid. ACS Appl. Mater. Interfaces. 8, 2961–2973 (2016). https://doi.org/10.1021/acsami.5b09370

    Article  CAS  Google Scholar 

  13. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008). https://doi.org/10.1021/cr068040u

    Article  CAS  Google Scholar 

  14. Espinosa, T., Sanes, J., Jiménez, A.E., Bermúdez, M.D.: Protic ammonium carboxylate ionic liquid lubricants of OFHC copper. Wear 303, 495–509 (2013). https://doi.org/10.1016/j.wear.2013.03.041

    Article  CAS  Google Scholar 

  15. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces. 9, 3209–3222 (2017). https://doi.org/10.1021/acsami.6b12489

    Article  CAS  Google Scholar 

  16. González, R., Bartolomé, M., Blanco, D., Viesca, J.L., Fernández-González, A., Battez, A.H.: Effectiveness of phosphonium cation-based ionic liquids as lubricant additive. Tribol. Int. 98, 82–93 (2016). https://doi.org/10.1016/j.triboint.2016.02.016

    Article  CAS  Google Scholar 

  17. Mordukhovich, G., Qu, J., Howe, J.Y., Bair, S., Yu, B., Luo, H., Smolenski, D.J., Blau, P.J., Bunting, B.G., Dai, S.: A low-viscosity ionic liquid demonstrating superior lubricating performance from mixed to boundary lubrication. Wear 301, 740–746 (2013). https://doi.org/10.1016/j.wear.2012.11.076

    Article  CAS  Google Scholar 

  18. Zhou, Y., Dyck, J., Graham, T.W., Luo, H., Leonard, D.N., Qu, J.: Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives. Langmuir 30, 13301–13311 (2014). https://doi.org/10.1021/la5032366

    Article  CAS  Google Scholar 

  19. Guo, H., Liu, R., Fuentes-Aznar, A., Iglesias Victoria, P.: Friction and Wear Properties of Halogen-Free and Halogen-Containing Ionic Liquids Used As Neat Lubricants, Lubricant Additives and Thin Lubricant Layers. In: Volume 10: 2017 ASME International Power Transmission and Gearing Conference. pp. 1–6. American Society of Mechanical Engineers (2017)

  20. Somers, A.E., Biddulph, S.M., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys. Chem. Chem. Phys. 14, 8224–8231 (2012). https://doi.org/10.1039/c2cp40736a

    Article  CAS  Google Scholar 

  21. Han, Y., Qiao, D., Zhang, L., Feng, D.: Study of tribological performance and mechanism of phosphonate ionic liquids for steel/aluminum contact. Tribol. Int. 84, 71–80 (2015). https://doi.org/10.1016/j.triboint.2014.11.013

    Article  CAS  Google Scholar 

  22. Matczak, L., Johanning, C., Gil, E., Guo, H., Smith, T.W., Schertzer, M., Iglesias, P.: Effect of cation nature on the lubricating and physicochemical properties of three ionic liquids. Tribiology Int. 124, 23–33 (2018). https://doi.org/10.1016/j.triboint.2018.03.024

    Article  CAS  Google Scholar 

  23. Han, Y., Qiao, D., Sun, L., Feng, D.: Functional alkylimidazolium ionic liquids as lubricants for steel/aluminum contact: Influence of the functional groups on tribological performance. Tribol. Int. 119, 766–774 (2018). https://doi.org/10.1016/j.triboint.2017.11.042

    Article  CAS  Google Scholar 

  24. Zhang, S., Ma, L., Wen, P., Ye, X., Dong, R., Sun, W., Fan, M., Yang, D., Zhou, F., Liu, W.: The ecotoxicity and tribological properties of choline amino acid ionic liquid lubricants. Tribol. Int. 121, 435–441 (2018). https://doi.org/10.1016/j.triboint.2018.01.063

    Article  CAS  Google Scholar 

  25. Patel, A., Guo, H., Iglesias, P.: Study of the lubricating ability of protic ionic liquid on an aluminum-steel contact. Lubricants. 6, 66 (2018). https://doi.org/10.3390/lubricants6030066

    Article  Google Scholar 

  26. Jiménez, A.E., Bermúdez, M.D., Iglesias, P., Carrión, F.J., Martínez-Nicolás, G.: 1-N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel-aluminium contacts. Wear 260, 766–782 (2006). https://doi.org/10.1016/j.wear.2005.04.016

    Article  CAS  Google Scholar 

  27. Huang, G., Yu, Q., Ma, Z., Cai, M., liu, W. : Probing the lubricating mechanism of oil-soluble ionic liquids additives. Tribol. Int. 107, 152–162 (2017). https://doi.org/10.1016/j.triboint.2016.08.027

    Article  CAS  Google Scholar 

  28. Guo, H., Ackerman, J., Landi, B., Keil, S., Puchades, I., Iglesias, P.: The effects of single-walled carbon nanotubes and ionic liquids in reduction of friction and wear. ASME Int. Mech. Eng. Congr. Expo. Proc. (2018). https://doi.org/10.1115/IMECE2018-86703

    Article  Google Scholar 

  29. Cigno, E., Magagnoli, C., Pierce, M.S., Iglesias, P.: Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear 376–377, 756–765 (2017). https://doi.org/10.1016/j.wear.2017.01.010

    Article  CAS  Google Scholar 

  30. Grace, J., Vysochanska, S., Lodge, J., Iglesias, P.: Ionic liquids as additives of coffee bean oil in steel-steel contacts. Lubricants. 3, 637–649 (2015). https://doi.org/10.3390/lubricants3040637

    Article  Google Scholar 

  31. Iglesias, P., Bermúdez, M.D., Carrión, F.J., Martínez-Nicolás, G.: Friction and wear of aluminium-steel contacts lubricated with ordered fluids-neutral and ionic liquid crystals as oil additives. Wear 256, 386–392 (2004). https://doi.org/10.1016/S0043-1648(03)00442-3

    Article  CAS  Google Scholar 

  32. A. Magar, S., Guo, H., Iglesias, P.: Ionic Liquid As Cutting Fluid Additive Using Minimum Quantity Lubricant (MQL) in Titanium-Ceramic Contact. In: Volume 12: Advanced Materials: Design, Processing, Characterization, and Applications. American Society of Mechanical Engineers (2019)

  33. Totolin, V., Minami, I., Gabler, C., Dörr, N.: Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 67, 191–198 (2013). https://doi.org/10.1016/j.triboint.2013.08.002

    Article  CAS  Google Scholar 

  34. Köster, V.: Border between ionic liquids and electrolyte solutions. ChemViews. (2012). https://doi.org/10.1002/chemv.201200077

    Article  Google Scholar 

  35. Guo, H., Iglesias, P.: Tribological Properties of Ammonium Protic Ionic Liquids As Additives in Polyalphaolefin for Steel-Steel Contact. In: Volume 12: Advanced Materials: Design, Processing, Characterization, and Applications. American Society of Mechanical Engineers (2019)

  36. Avilés, M.D., Carrión, F.J., Sanes, J., Bermúdez, M.D.: Effects of protic ionic liquid crystal additives on the water-lubricated sliding wear and friction of sapphire against stainless steel. Wear 408–409, 56–64 (2018). https://doi.org/10.1016/j.wear.2018.04.015

    Article  CAS  Google Scholar 

  37. Espinosa, T., Jimenez, M., Sanes, J., Jimenez, A.E., Iglesias, M., Bermudez, M.D.: Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire-stainless steel interface. Tribol. Lett. 53, 1–9 (2014). https://doi.org/10.1007/s11249-013-0238-3

    Article  CAS  Google Scholar 

  38. Saurín, N., Avilés, M.D., Espinosa, T., Sanes, J., Carrión, F.J., Bermúdez, M.D., Iglesias, P.: Carbon nanophases in ordered nanofluid lubricants. Wear 376–377, 747–755 (2017). https://doi.org/10.1016/j.wear.2017.01.008

    Article  CAS  Google Scholar 

  39. Niemann, T., Li, H., Warr, G.G., Ludwig, R., Atkin, R.: Influence of hydrogen bonding between ions of like charge on the ionic liquid interfacial structure at a mica surface. J. Phys. Chem. Lett. 10, 7368–7373 (2019). https://doi.org/10.1021/acs.jpclett.9b03007

    Article  CAS  Google Scholar 

  40. Ortega Vega, M.R., Ercolani, J., Mattedi, S., Aguzzoli, C., Ferreira, C.A., Rocha, A.S., Malfatti, C.F.: Oleate-based protic ionic liquids as lubricants for aluminum 1100. Ind. Eng. Chem. Res. 57, 12386–12396 (2018). https://doi.org/10.1021/acs.iecr.8b02426

    Article  CAS  Google Scholar 

  41. Guo, H., Smith, T.W., Iglesias, P.: The study of hexanoate-based protic ionic liquids used as lubricants in steel-steel contact. J. Mol. Liq. 299, 112208 (2019). https://doi.org/10.1016/j.molliq.2019.112208

    Article  CAS  Google Scholar 

  42. Mu, L., Shi, Y., Guo, X., Ji, T., Chen, L., Yuan, R., Brisbin, L., Wang, H., Zhu, J.: Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv. 5, 66067–66072 (2015). https://doi.org/10.1039/C5RA11093A

    Article  CAS  Google Scholar 

  43. Mu, L., Shi, Y., Wang, H., Zhu, J.: Lignin in ethylene glycol and poly(ethylene glycol): fortified lubricants with internal hydrogen bonding. ACS Sustain. Chem. Eng. 4, 1840–1849 (2016). https://doi.org/10.1021/acssuschemeng.6b00049

    Article  CAS  Google Scholar 

  44. Guo, H., Adukure, A.R., Iglesias, P.: Effect of ionicity of three protic ionic liquids as neat lubricants and lubricant additives to a biolubricant. Coatings 9, 713 (2019). https://doi.org/10.3390/coatings9110713

    Article  CAS  Google Scholar 

  45. Qu, J., Truhan, J.J.: An efficient method for accurately determining wear volumes of sliders with non-flat wear scars and compound curvatures. Wear 261, 848–855 (2006). https://doi.org/10.1016/j.wear.2006.01.009

    Article  CAS  Google Scholar 

  46. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Li, H., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces. 4, 997–1002 (2012). https://doi.org/10.1021/am201646k

    Article  CAS  Google Scholar 

  47. Hayes, R., Imberti, S., Warr, G.G., Atkin, R.: The nature of hydrogen bonding in protic ionic liquids. Angew. Chemie. 125, 4721–4725 (2013). https://doi.org/10.1002/ange.201209273

    Article  Google Scholar 

  48. Guo, H., Smith, T.W., Iglesias, P.: The study of hexanoate-based protic ionic liquids used as lubricants in steel-steel contact. J. Mol. Liq. 299, 112208 (2020). https://doi.org/10.1016/j.molliq.2019.112208

    Article  CAS  Google Scholar 

  49. Bermúdez, M.D., Carrión, F.J., Iglesias, P., Jiménez, A.E., Gines, M.N., Sanes, J.: Ionic liquids interactions with materials surfaces applications in tribology and Nanotechnology. Mater. Res. Soc. Symp. Proc. 1082, 1–11 (2008). https://doi.org/10.1557/proc-1082-q07-02

    Article  Google Scholar 

  50. Krewski, D., Yokel, R. a, Nieboer, E., Borchelt, D., Cohen, J., Kacew, S., Lindsay, J., Mahfouz, A.M., Rondeau, V.: KREWSKI, D. et al. Human Health Risk Assessment For Aluminium, Aluminium Oxide, and Aluminium Hydroxide. [s.l: s.n.]. v. 10Human Health Risk Assessment For Aluminium, Aluminium Oxide, and Aluminium Hydroxide. (2007)

Download references

Acknowledgements

The authors want to express their gratitude to REPSOL (Spain) for providing the commercial lubricant TELEX E 46 and its corresponding base oil. Hong Guo truly appreciates the Gleason Doctoral Fellowship from the Gleason Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Iglesias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Pang, J., Adukure, A.R. et al. Influence of Hydrogen Bonding and Ionicity of Protic Ionic Liquids on Lubricating Steel–Steel and Steel–Aluminum Contacts: Potential Ecofriendly Lubricants and Additives. Tribol Lett 68, 114 (2020). https://doi.org/10.1007/s11249-020-01354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01354-1

Keywords

Navigation