Skip to main content
Log in

QTL and candidate gene analyses of rootstock-mediated mandarin fruit yield and quality traits under contrasting iron availabilities

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The most sustainable approach to overcome iron deficiency in fruit crops is breeding for rootstocks with a higher capability to acquire iron (Fe) from the soil. The objective of this study was quantitative trait loci (QTL) and candidate gene analyses of rootstock-mediated low-Fe tolerance in terms of fruit yield and quality traits, including Fe fruit content, in a satsuma mandarin-grafted rootstock population derived from a cross between Citrus reshni (Cleopatra mandarin) and Poncirus trifoliata, under sufficient and low-Fe fertilization (15.3 vs 5.2 μM Fe, respectively). Iron reduction to one-third significantly decreased satsuma leaf chlorophyll concentration, fruit iron concentration, and the fruit/leaf iron proportion. Thirty-four QTLs were detected for 46 heritable traits. Eighteen of them were also found significant when testing each parental genome separately. Seven QTLs contributed to the fruit concentrations of Cu, Fe, K, Na, and S. QTLs involved in rootstock mediated tolerance to Fe deficiency and fruit quality traits distributed into five genomic regions whose gene contents (assuming collinearity with the C. clementina genome) were investigated for overrepresented molecular functions and biological processes, and putative functional candidates. Among them, a metal-NA-transporter YSL3 (Ciclev 10019170m), four phytochelatin synthases, an iron-chelate-transporter ATPase, and four basic/helix-loop helix genes coding for likely relevant transcription factors in Fe homeostasis under Fe deficiency were found as follows: bHLH3 (Ciclev10019816m), bHLH137.1 (Ciclev10031873m), bHLH123 (Ciclev10008228m), and ILR3 (Ciclev10009354m). Genes within three QTL regions supported a genetic connection between rootstock-mediated tolerance to Fe deficiency and biotic stresses in citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The SSR primer sequences are available upon request, for scientific purposes only, from the corresponding author mjasins@ivia.es. The genetic linkage maps were submitted to the Citrus Genome Database (https://www.citrusgenomedb.org/). Other markers are described in Raga et al. (2016). The parents of the progeny are kept at the Citrus Germplasm Bank, and the accession references are: IVIA-385 (Cleopatra mandarin), IVIA-537 (Flying Dragon trifoliate orange) and IVIA-236 (Rich trifoliate orange). Genomic data on candidate genes are provided as electronic supplementary material EMS_6.

References

  • Abadía J, Alvarez-Fernandez A, Rombolà AD, Sanz M, Tagliavini M, Abadía M (2004) Technologies for the diagnosis and remediation of Fe deficiency. Soil Sci Plant Nutr 50:965–971

    Article  Google Scholar 

  • Almaliotis DD, Manganaris AG, Simonis AD, Bladenopoulou SB (1995) Rootstock effect on yield and mineral nutrition of ‘Maycrest? Peach trees under conditions of lime-induced chlorosis. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 301–306

    Chapter  Google Scholar 

  • Asins MJ, Fernández-Ribacoba J, Bernet GP, Gadea J, Cambra M, Gorris MT, Carbonell EA (2012) The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol Breed 29:575–587

    Article  Google Scholar 

  • Asins MJ, Raga MV, Torrent D, Roca D, Carbonell EA (2020) QTL and candidate gene analyses of rootstock-mediated tomato fruit yield and quality traits under low iron stress. Euphytica. 216. https://doi.org/10.1007/s10681-020-02599-6

  • Backer R, Sanushka Naidoo S, van den Berg N (2019) The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front Plant Sci 10:102. https://doi.org/10.3389/fpls.2019.00102

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargsten JW, Nap J-P, Sanchez-Perez GF, van Dijk ADJ (2014) Priorization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros e Silva AE, Marques A, dos Santos KGB, Guerra M (2010) The evolution of CMA bands in Citrus and related genera. Chromosom Res 18:503–5014

    Article  CAS  Google Scholar 

  • Ben Yahmed J, Costantino G, Amiel P, Talon M, Ollitrault P, Morillon R, Luro F (2016) Diversity in the trifoliate orange taxon reveals two main genetic groups marked by specific morphological traits and water deficit tolerance properties. J Agric Sci 154:495–514. https://doi.org/10.1017/S0021859615000234

    Article  CAS  Google Scholar 

  • Castle WS, Rom RC, Carlson RF (1987) Rootstocks for fruit crops. In: Citrus rootstocks. Wiley, New York, pp 361–399

    Google Scholar 

  • Castle WS, Nunnallee J, Manthey JA (2009) Screening Citrus rootstocks and related selections in soil and solution culture for tolerance to low-iron stress. Hortscience 44:638–645

    Article  Google Scholar 

  • Chen C-C, Chien W-F, Lin N-C, Yeh K-C (2014) Alternative functions of Arabidopsis Yellow Stripe-Like3: from metal translocation to pathogen defense. PLoS One 9:e98008. https://doi.org/10.1371/journal.pone.0098008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H-H, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL (2010) Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol 154:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech A, Zarycka E, Yanovych D, Zasadna Z, Grzegorczyk I, Klys S (2020) Mineral content of the pulp and peel of various citrus fruit cultivars. Biol Trace Elem Res 193:555–563. https://doi.org/10.1007/s12011-019-01727-1

    Article  CAS  PubMed  Google Scholar 

  • Djemal R, Mila I, Bouzayen M, Pirrello J, Khoudi H (2018) Molecular cloning and characterization of novel WIN1/SHN1 ethylene responsive transcription factor HvSHN1 in barley (Hordeum vulgare L.). J Plant Physiol 228:39–46

  • Fang DQ, Roose ML, Krueger RR, Federici CT (1997) Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet 95:211–219

    Article  CAS  Google Scholar 

  • Fernandez V, Winkelmann G, Ebert G (2004) Iron supply to tobacco plants though foliar application of iron citrate and ferric dimerum acid. Physiol Plant 122:380–385

    Article  CAS  Google Scholar 

  • Forner-Giner MA, Llosa MJ, Carrasco JL, Perez-Amador MA, Navarro L, Ancillo G (2009) Differential gene expression analysis provides new insights into the molecular basis of iron deficiency stress response in the citrus rootstock Poncirus trifoliata (L.) Raf. J Exp Bot 61:483–490. https://doi.org/10.1093/jxb/erp328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu LN, Zhu QQ, Sun YY, Du W, Pan ZY, Peng SA (2017) Physiological and transcriptional changes of three citrus rootstock seedlings under iron deficiency. Front Plant Sci 8:1104. https://doi.org/10.3389/fpls.2017.01104

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattapaglia D, Sederoff RR (1994) Genetic linkage maps of Eucaliptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero R, Asins MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Genet 93:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Hong YS, Choi JY, Nho EY, Hwang IM, Khan N, Jamila N, Kim KS (2019) Determination of macro, micro and trace elements in citrus fruits by inductively coupled plasma-optical emission spectrometry (ICP-OES), ICP-mass spectrometry and direct mercury analyzer. J Sci Food Agric 99:1870–1879. https://doi.org/10.1002/jsfa.9382

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG (2018) Construction of high-density genetic mapas and detection of QTLs associated with Huanglongbing tolerance in citrus. Front Plant Sci 9:1694. https://doi.org/10.3389/fpls.2018.01694

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  • Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol 11:51. https://doi.org/10.1186/1471-2229-11-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaegger B, Goldbach H, Sommer K (2000) Release from lime induced iron chlorosis by CULTAN in fruit trees and its characterization by analysis. Acta Hortic 531:107–113

    Article  Google Scholar 

  • Jessop RS, Roth G, Sale P (1990) Effects of increased levels of soil CaCO3 on lupin (Lupinus angustifolius) growth and nodulation. Aust J Soil Res 28:955–962

    Article  CAS  Google Scholar 

  • Jiao W-B, Huang D, Xing F, Hu Y, Deng X-X, Xu Q, Chen L-L (2013) Genome-wide characterization and expression analysis of genetic variants in sweet orange. Plant J 75:954–964

    Article  CAS  PubMed  Google Scholar 

  • Korcak R (1987) Iron deficiency chlorosis. Hort Rev (Amer Soc Hort Sci) 9:133–186

    CAS  Google Scholar 

  • Lado J, Cuellar F, Rodrigo MJ, Zacarias L (2016) Nutritional composition of mandarins. In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars Elsevier Inc pp: 419–443. https://doi.org/10.1016/B978-0-12-408117-8.00018-0

  • Licciardello C, Torrisi B, Allegra M, Sciacca F, Roccuzzo G, Intrigliolo F, Recupero GR, Tononi P, Delledonne M, Muccilli V (2013) A transcriptomic analysis of sensitive and tolerant citrus rootstocks under natural Iron deficiency conditions. J Am Soc Hortic Sci 138:487–498

    Article  CAS  Google Scholar 

  • Lima RPM, Curtolo M, Merfa MV, Cristofani-Yali M, Machado MA (2018) QTLs and eQTLs mapping related to citrandarins resistance to citrus gummosis disease. BMC Genomics 19:516. https://doi.org/10.1186/s12864-018-4888-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manthey JA, McCoy DL, Crowley DE (1994) Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in citrus rootstocks. Plant Physiol Biochem 32:211–215

    CAS  Google Scholar 

  • Martinez-Cuenca MR, Iglesias DJ, Talon M, Abadia J, Lopez-Millan AF, Primo-Millo E, Legaz F (2013) Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf.]. Tree Physiol 33:320–329. https://doi.org/10.1093/treephys/tpt011

    Article  CAS  PubMed  Google Scholar 

  • Masaoka Y, Pustika A, Subandiyah S, Okada A, Hanundin E, Purwanto B, Okuda M, Okada Y, Saito A, Holford P, Beattie A, Iwanami T (2011) Lower concentrations of microelements in leaves of citrus infected with Candidatus Liberibacter asiaticus. Jarq-Jpn Agr Res Q 45:269–275. https://doi.org/10.6090/jarq.45.269

    Article  CAS  Google Scholar 

  • Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A (2011) Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosom Res 19:521–530. https://doi.org/10.1007/s10577-011-9203-x

    Article  CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant-tissues-iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Muccilli V, Licciardello C, Fontanini D, Cunsolo V, Capocchi A, Saletti R, Torrisi B, Foti S (2013) Root protein profiles of two citrus rootstocks grown under iron sufficiency/deficiency conditions. Eur J Mass Spectrom 19:305–324. https://doi.org/10.1255/ejms.1230

    Article  CAS  Google Scholar 

  • Pestana M, de Varennes A, Abadia J, Faria EA (2005) Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Sci Hortic 104:25–36. https://doi.org/10.1016/j.scienta.2004.07.007

    Article  CAS  Google Scholar 

  • Pestana M, Correia PJ, David M, Abadia A, Abadia J, de Varennes A (2011) Response of five citrus rootstocks to iron deficiency. J Soil Sci Plant Nutr 174:837–846. https://doi.org/10.1002/jpln.201000341

    Article  CAS  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071

    Article  Google Scholar 

  • Raga V, Intrigliolo DS, Bernet GP, Carbonell EA, Asíns MJ (2016) Genetic analysis of salt tolerance in a progeny derived from the citrus rootstocks Cleopatra mandarin and trifoliate orange. Tree Genet Genomes 12:34. https://doi.org/10.1007/s11295-016-0991-1

    Article  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 27:959–975

    Article  CAS  Google Scholar 

  • Ruiz C, Bretó MP, Asins MJ (2000) An efficient methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    Article  CAS  Google Scholar 

  • Samira R, Li B, Kliebenstein D, Li C, Davis E, Gillikin JW, Long TA (2018) The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Mol Biol 97:297–309. https://doi.org/10.1007/s11103-018-0735-8

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, update. Nucleic Acids Res 45:W122–W129. https://doi.org/10.1093/nar/gkx382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2009) MapQTL 6 software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma, Wageningen

    Google Scholar 

  • Van Ooijen JW (2012) JoinMap 4.1 software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen

    Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Terol J, Ibanez V et al (2018) Genomics of the origin and evolution of Citrus. Nature 554:311–316. https://doi.org/10.1038/nature25447

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Dong T, Li JF, Wang MY (2016) Molecular cloning, expression, and subcellular localization of a PAL gene from Citrus reticulata under iron deficiency. Biol Plant 60:482–488. https://doi.org/10.1007/s10535-016-0625-3

    Article  CAS  Google Scholar 

  • Zhang X-Y, Qiu J-Y, Hui Q-L, Xu Y-Y, He Y-Z, Peng L-Z, Fu X-Z (2020) Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency. BMC Genomics 21(1):233. https://doi.org/10.1186/s12864-020-6644-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Miryam Rojas at Servicio de Instrumentación Científica de la Estación Experimental del Zaidín (CSIC) for mineral analysis and Mr. José Cerdá for technical assistance.

Funding

This work was supported by grants from the Spanish Government (MJA) (AGL2014-56675-R, AGL2017-82452-C2-2-R),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Asins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the experiment complies with the current laws.

Additional information

Communicated by E. Dirlewanger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 477 kb)

ESM 2

(PDF 312 kb)

ESM 3

(PDF 591 kb)

ESM 4

(PDF 702 kb)

ESM 5

(PDF 315 kb)

ESM 6

(XLSX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asins, M.J., Raga, M.V., Roca, D. et al. QTL and candidate gene analyses of rootstock-mediated mandarin fruit yield and quality traits under contrasting iron availabilities. Tree Genetics & Genomes 16, 79 (2020). https://doi.org/10.1007/s11295-020-01472-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01472-w

Keywords

Navigation