Skip to main content

Advertisement

Log in

Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

The emerging technology of autonomous vehicles has been widely recognized as a promising urban mobility solution in the future. This paper considers the integration of autonomous vehicles into bus transit systems and proposes a modeling framework to determine the optimal bus fleet size and its assignment onto multiple bus lines in a bus service network considering uncertain demand. The mixed-integer stochastic programming approach is applied to formulate the problem. We apply the sample average approximation (SAA) method to solve the formulated stochastic programming problem. To tackle the nonconvexity of the SAA problem, we first present a reformulation method that transforms the problem into a mixed-integer conic quadratic program (MICQP), which can be solved to its global optimal solution by using some existing solution methods. However, this MICQP based approach can only handle the small-size problems. For the cases with large problem size, we apply the approach of quadratic transform with linear alternating algorithm, which allows for efficient solution to large-scale instances with up to thousands of scenarios in a reasonable computational time. Numerical results demonstrate the benefits of introducing autonomous buses as they are flexible to be assigned across different bus service lines, especially when demand uncertainty is more significant. The introduction of autonomous buses would enable further reduction of the required fleets and total cost. The model formulation and solution methods proposed in this study can be used to provide bus transit operators with operational guidance on including autonomous buses into bus services, especially on the autonomous and conventional bus fleets composition and allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf.

References

  • Abe, R.: Introducing autonomous buses and taxis: quantifying the potential benefits in japanese transportation systems. Transp. Res. Part A Policy Pract. 126, 94–113 (2019)

    Article  Google Scholar 

  • Aldaihani, M.M., Quadrifoglio, L., Dessouky, M.M., Hall, R.: Network design for a grid hybrid transit service. Transp. Res. Part A Policy Pract. 38(7), 511–530 (2004)

    Article  Google Scholar 

  • Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  Google Scholar 

  • An, K., Lo, H.K.: Two-phase stochastic program for transit network design under demand uncertainty. Transp. Res. Part B Methodol. 84, 157–181 (2016)

    Article  Google Scholar 

  • Beaujon, G.J., Turnquist, M.A.: A model for fleet sizing and vehicle allocation. Transp. Sci. 25(1), 19–45 (1991)

    Article  Google Scholar 

  • Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, vol. 2. Siam, Peninsula (2001)

    Book  Google Scholar 

  • Benson, H.: On the global optimization of sums of linear fractional functions over a convex set. J. Optim. Theory Appl. 121(1), 19–39 (2004)

    Article  Google Scholar 

  • Bergqvist, O., Åstrand, M.: Bus line optimisation using autonomous minibuses (2017). https://www.divaportal.org/smash/get/diva2:1120402/FULLTEXT01.pdf

  • CAN News: Singapore: More Bus Drivers Needed in Next Five Years. https://www.channelnewsasia.com/news/singapore (2017). Accessed 26 June 2019

  • Ceder, A.: Estimation of fleet size for variable bus schedules. Transp. Res. Rec. 1903(1), 2–10 (2005)

    Article  Google Scholar 

  • Chen, P.W., Nie, Y.M.: Optimal design of demand adaptive paired-line hybrid transit: case of radial route structure. Transp. Res. part E Logist. Transp. Rev. 110, 71–89 (2018)

    Article  Google Scholar 

  • Chen, A., Zhou, Z., Chootinan, P., Ryu, S., Yang, C., Wong, S.: Transport network design problem under uncertainty: a review and new developments. Transp. Rev. 31(6), 743–768 (2011)

    Article  Google Scholar 

  • Chen, J., Liu, Z., Zhu, S., Wang, W.: Design of limited-stop bus service with capacity constraint and stochastic travel time. Transp. Res. part E Logist. Transp. Rev. 83, 1–15 (2015)

    Article  Google Scholar 

  • Clark, C.E.: The greatest of a finite set of random variables. Oper. Res. 9(2), 145–162 (1961)

    Article  Google Scholar 

  • Council, A.T.: National guidelines for transport system management in Australia. Backgr. Mater. 5, Volume 4: Urban Transport, pp. 179–211 (2006)

  • Dandapat, S., Maitra, B.: An approach for identifying optimal service for rural bus routes. Case Stud. Transp. Policy 3(3), 287–294 (2015)

    Article  Google Scholar 

  • Dong, X., DiScenna, M., Guerra, E.: Transit user perceptions of driverless buses. Transportation 46(1), 35–50 (2019)

    Article  Google Scholar 

  • Geetha, S., Nair, K.: A variation of the assignment problem. Eur. J. Oper. Res. 68(3), 422–426 (1993)

    Article  Google Scholar 

  • Gentile, G., Noekel, K.: Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems. Springer, Gewerbestrasse (2016)

    Book  Google Scholar 

  • Huang, Z., Ren, G., Liu, H.: Optimizing bus frequencies under uncertain demand: case study of the transit network in a developing city. Math. Prob. Eng. (2013). https://doi.org/10.1155/2013/375084

    Article  Google Scholar 

  • Jansson, J.O.: A simple bus line model for optimisation of service frequency and bus size. J. Transp. Econ. Policy 14(1), 53–80 (1980)

    Google Scholar 

  • Jara-Díaz, S., Fielbaum, A., Gschwender, A.: Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport. Transp. Res. Part A Policy Pract. 106, 65–74 (2017)

    Article  Google Scholar 

  • Jiménez, F., Román, A.: Urban bus fleet-to-route assignment for pollutant emissions minimization. Transp. Res. Part E Logist. Transp. Rev. 85, 120–131 (2016)

    Article  Google Scholar 

  • Ker, K., Kuo, H., Schondeld, M.: Optimal mixed bus fleet for urban operations. Transp. Res. Rec. 1503, 39–48 (1995)

    Google Scholar 

  • Kim, M., Schonfeld, P.: Conventional, flexible, and variable-type bus services. J. Transp. Eng. 138(3), 263–273 (2012)

    Article  Google Scholar 

  • Kim, M.E., Schonfeld, P.: Integrating bus services with mixed fleets. Transp. Res. Part B Methodol. 55, 227–244 (2013)

    Article  Google Scholar 

  • Kim, M.E., Schonfeld, P.: Integration of conventional and flexible bus services with timed transfers. Transp. Res. Part B Methodol. 68, 76–97 (2014)

    Article  Google Scholar 

  • Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    Article  Google Scholar 

  • Li, X., Quadrifoglio, L.: Optimal zone design for feeder transit services. Transp. Res. Rec. 2111(1), 100–108 (2009)

    Article  Google Scholar 

  • Li, X., Quadrifoglio, L.: Feeder transit services: choosing between fixed and demand responsive policy. Transp. Res. Part C Emerg. Technol. 18(5), 770–780 (2010)

    Article  Google Scholar 

  • Li, Z.-C., Lam, W.H., Sumalee, A.: Modeling impact of transit operator fleet size under various market regimes with uncertainty in network. Transp. Res. Rec. 2063(1), 18–27 (2008)

    Article  Google Scholar 

  • Li, Z.-C., Lam, W.H., Wong, S.: On the allocation of new lines in a competitive transit network with uncertain demand and scale economies. J. Adv. Transp. 45(4), 233–251 (2011)

    Article  Google Scholar 

  • Li, Z.-C., Lam, W.H., Wong, S.: Optimization of number of operators and allocation of new lines in an oligopolistic transit market. Netw. Spat. Econ. 12(1), 1–20 (2012a)

    Article  Google Scholar 

  • Li, Z.-C., Lam, W.H., Wong, S., Sumalee, A.: Environmentally sustainable toll design for congested road networks with uncertain demand. Int. J. Sustain. Transp. 6(3), 127–155 (2012b)

    Article  Google Scholar 

  • Lin, Y.H., Wang, Y., He, D., Lee, L.H.: Last-mile delivery: Optimal locker location under multinomial logit choice model. Transp. Res. Part E Logist. Transp. Rev. 142, 102059 (2020)

    Article  Google Scholar 

  • Liu, H., Wang, D.Z.: Global optimization method for network design problem with stochastic user equilibrium. Transp. Res. Part B Methodol. 72, 20–39 (2015)

    Article  Google Scholar 

  • Liu, Z., Yan, Y., Qu, X., Zhang, Y.: Bus stop-skipping scheme with random travel time. Transp. Res. Part C Emerg. Technol. 35, 46–56 (2013)

    Article  Google Scholar 

  • Long, Y., Lee, L.H., Chew, E.P.: The sample average approximation method for empty container repositioning with uncertainties. Eur. J. Oper. Res. 222(1), 65–75 (2012)

    Article  Google Scholar 

  • Luathep, P., Sumalee, A., Lam, W.H., Li, Z.-C., Lo, H.K.: Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. Transp. Res. Part B Methodol. 45(5), 808–827 (2011)

    Article  Google Scholar 

  • Nayan, A., Wang, D.Z.: Optimal bus transit route packaging in a privatized contracting regime. Transp. Res. Part A Policy Pract. 97, 146–157 (2017)

    Article  Google Scholar 

  • Ongel, A., Loewer, E., Roemer, F., Sethuraman, G., Chang, F., Lienkamp, M.: Economic assessment of autonomous electric microtransit vehicles. Sustainability 11(3), 648 (2019)

    Article  Google Scholar 

  • Patil, G.R., Ukkusuri, S.V.: Sample average approximation technique for flexible network design problem. J. Comput. Civ. Eng. 25(3), 254–262 (2011)

    Article  Google Scholar 

  • Pinto, H.K., Hyland, M.F., Mahmassani, H.S., Verbas, I.Ö.: Joint design of multimodal transit networks and shared autonomous mobility fleets. Transp. Res. Part C Emerg. Technol. 111, 255–293 (2020)

    Article  Google Scholar 

  • Salonen, A.O.: Passenger’s subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland. Transp. Policy 61, 106–110 (2018)

    Article  Google Scholar 

  • Salzborn, F.J.: Optimum bus scheduling. Transp. Sci. 6(2), 137–148 (1972)

    Article  Google Scholar 

  • Shapiro, A., Philpott, A.: A tutorial on stochastic programming. www2.isye.gatech.edu/ashapiro/publications.html, 17 (2007)

  • Shen, K., Yu, W.: Fractional programming for communication systems–part i: power control and beamforming. IEEE Trans. Signal Process. 66(10), 2616–2630 (2018)

    Article  Google Scholar 

  • Shen, Y., Zhang, H., Zhao, J.: Integrating shared autonomous vehicle in public transportation system: a supply-side simulation of the first-mile service in Singapore. Transp. Res. Part A Policy Pract. 113, 125–136 (2018)

    Article  Google Scholar 

  • Silman, L.A., Barzily, Z., Passy, U.: Planning the route system for urban buses. Comput. Oper. Res. 1(2), 201–211 (1974)

    Article  Google Scholar 

  • Szeto, W.Y., Jiang, Y.: Hybrid artificial bee colony algorithm for transit network design. Transp. Res. Rec. 2284(1), 47–56 (2012)

    Article  Google Scholar 

  • Szeto, W.Y., Jiang, Y.: Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach. Transp. Res. Part B Methodol. 67, 235–263 (2014)

    Article  Google Scholar 

  • Szeto, W.Y., Wu, Y.: A simultaneous bus route design and frequency setting problem for tin Shui Wai, Hong Kong. Eur. J. Oper. Res. 209(2), 141–155 (2011)

    Article  Google Scholar 

  • Tirachini, A., Antoniou, C.: The economics of automated public transport: effects on operator cost, travel time, fare and subsidy. Econ. Transp. 21, 100151 (2020)

    Article  Google Scholar 

  • Wang, D.Z., Lo, H.K.: Multi-fleet ferry service network design with passenger preferences for differential services. Transp. Res. Part B Methodol. 42(9), 798–822 (2008)

    Article  Google Scholar 

  • Wang, D.Z., Lo, H.K.: Global optimum of the linearized network design problem with equilibrium flows. Transp. Res. Part B Methodol. 44(4), 482–492 (2010)

    Article  Google Scholar 

  • Wang, D.Z., Liu, H., Szeto, W.: A novel discrete network design problem formulation and its global optimization solution algorithm. Transp. Res. Part E Logis. Transp. Rev. 79, 213–230 (2015)

    Article  Google Scholar 

  • Wang, D.Z., Nayan, A., Szeto, W.: Optimal bus service design with limited stop services in a travel corridor. Transp. Res. Part E Logis. Transp. Rev. 111, 70–86 (2018)

    Article  Google Scholar 

  • Wen, J., Chen, Y.X., Nassir, N., Zhao, J.: Transit-oriented autonomous vehicle operation with integrated demand-supply interaction. Transp. Res. Part C Emerg. Technol. 97, 216–234 (2018)

    Article  Google Scholar 

  • Wien, J.: An assessment of the willingness to choose a self-driving bus for an urban trip: a public transport user’s perspective. http://resolver.tudelft.nl/uuid:8064cc17-dc0e-4c0c-9a9c-6efca8564d94 (2019)

  • Winter, K., Wien, J., Molin, E., Cats, O., Morsink, P., van Arem, B.: Taking the self-driving bus: a passenger choice experiment. In: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp 1–8. IEEE (2019)

  • Yoo, G.-S., Kim, D.-K., Chon, K.S.: Frequency design in urban transit networks with variable demand: model and algorithm. KSCE J. Civ. Eng. 14(3), 403–411 (2010)

    Article  Google Scholar 

  • Yu, B., Yang, Z.-Z., Jin, P.-H., Wu, S.-H., Yao, B.-Z.: Transit route network design-maximizing direct and transfer demand density. Transp. Res. Part C Emerg. Technol. 22, 58–75 (2012)

    Article  Google Scholar 

  • Zak, J., Jaszkiewicz, A., Redmer, A.: Multiple criteria optimization method for the vehicle assignment problem in a bus transportation company. J. Adv. Transp. 43(2), 203–243 (2009)

    Article  Google Scholar 

  • Zhang, W., Jenelius, E., Badia, H.: Efficiency of semi-autonomous and fully autonomous bus services in trunk-and-branches networks. J. Adv. Transp. (2019). https://doi.org/10.1155/2019/7648735

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Singapore Ministry of Education Academic Research Fund MOE2017-T2-2-093.

Author information

Authors and Affiliations

Authors

Contributions

QT Drafting of manuscript, model formulation and solution method design. YHL Computational experiments and solution analysis. DZWW Study conception and critical revision.

Corresponding author

Correspondence to David Z. W. Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Minimizing the objective function is equivalent to maximizing the following function:

$$\begin{aligned} \max \quad&\frac{\delta w_t |R||L| }{|R|} - Z(P2) \nonumber \\&= -\alpha ^a M - \sum _{l} \alpha ^c N_{l} - \sum _{l} c_{l}^c f_{l}^c - \frac{1}{|R|}\left[ \sum _{r} \sum _{l} c_l^a f_{l,r}^a +\sum _{r} \sum _{l} c_{p} \cdot u_{l, r}\right] \nonumber \\&+ \frac{w_t}{|R|} \sum _{r} \sum _{l} \frac{\delta (f_l^c + f_{l,r}^a) - k s_{l,r}}{f_l^c + f_{l,r}^a} \end{aligned}$$
(40)

where Z(P2) is the objective function of P2. Define a variable y such that \(y_{l,r} = \frac{\sqrt{\delta (f_l^c + f_{l,r}^a) - k s_{l,r}}}{f_l^c + f_{l,r}^a}\). (40) is equivalent to

$$\begin{aligned} \max \quad&\frac{w_t}{|R|}\left( \sum _l \sum _r 2 y_{l,r} \sqrt{\delta (f_l^c + f_{l,r}^a) - k s_{l,r}}-\sum _l \sum _r y_{l,r}^2(f_l^c + f_{l,r}^a)\right) \nonumber \\&-\alpha ^a M - \sum _{l} \alpha ^c N_{l} - \sum _{l} c_{l}^c f_{l}^c - \frac{1}{|R|}\left[ \sum _{r} \sum _{l} c_l^a f_{l,r}^a +\sum _{r} \sum _{l} c_{p} \cdot u_{l, r}\right] \end{aligned}$$
(41)

since plugging \(y_{l,r}\) into (41) will lead to (40). Finally, define function \(h(f_l^c, f_{l,r}^a,s_{l,r}) = \sqrt{\delta (f_l^c + f_{l,r}^a) - k s_{l,r}}\), we can rewrite the formulation in the hypograph form of h, i.e., \(\beta \le h\), leading to the formulation in P4. Note that, to ensure the square root function is well-defined, \(\delta \) should be chosen such that \(\delta (f_l^c + f_{l,r}^a) - k s_{l,r} > 0, \forall l \in I, r \in R\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Lin, Y.H. & Wang, D.Z.W. Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty. Transportation 48, 2735–2763 (2021). https://doi.org/10.1007/s11116-020-10146-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-020-10146-4

Keywords

Navigation