Skip to main content
Log in

Investigation on the Kinetics and Mechanism of Aluminothermic Reduction of Molybdenum Trioxide: Non-isothermal Kinetics

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, effect of milling process and CaO addition on the reaction mechanism and kinetics of aluminothermic reduction of molybdenum trioxide were studied by simultaneous thermal analysis, differential scanning calorimetry, X-ray diffraction analysis and Coats–Redfern method, respectively. For this purpose, molybdenum trioxide was reduced by Al powder under two different conditions of mechanical activation by milling process and as received form mixed by stoichiometric amount of CaO that was required for creation of CaMoO4 intermediate phase. In the case of using milled molybdenum trioxide, 20 wt% of aluminum oxide was used as heat absorber. The results showed that by using mechanically activated MoO3, the reduction reactions proceeded through the formation of intermediate phases of Al2(MoO4)3 and MoO2. In the presence of CaO, the intermediate phase was changed to CaMoO4. In both cases, the reaction temperatures and their activation energies decreased. The kinetic model for the aluminothermic reduction of un-milled and milled molybdenum trioxide was determined as chemical control, where by addition of CaO, mechanism of the reduction reaction was changed to diffusion control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dang J, Zhang G H, Chou K C, Reddy R G, He Y, Sun Y, Int J Refract Met Hard Mater 41 (2013) 216.

    Article  CAS  Google Scholar 

  2. Keshavarz Alamdari E, Trans Indian Inst Met 70 (2017) 1995.

    Article  CAS  Google Scholar 

  3. Wasim S, Guodong Z H, Ghufranud D, Xiangxian M, Trans Indian Inst Met 72 (2019) 559.

    Article  Google Scholar 

  4. Khabbaz S, Honarbakhsh-Raouf A, Ataie A, Saghafi M, Int J Refract Met Hard Mater 41 (2013) 402.

    Article  CAS  Google Scholar 

  5. Wang D H, Sun G D, Zhang G H, Int J Refract Met Hard Mater 75 (2018) 70.

    Article  CAS  Google Scholar 

  6. Sun G D, Zhang G H, Jiao S, Chou K C, J Phys Chem C 122 (2018) 1023.

    Google Scholar 

  7. Sun G D, Zhang G H, Ji X P, Liu J K, Zhang H, Chou K C, Int J Refract Met Hard Mater 80 (2019) 11.

    Article  CAS  Google Scholar 

  8. Manukyan K, Aydinyan S, Aghajanyan A, Grigoryan Y, Niazyan O, Kharatyan S, Int J Refract Met Hard Mater 31 (2012) 28.

    Article  CAS  Google Scholar 

  9. Manukyan K, Mnatsakanyan R, Kharatyan S, Int J Refract Met Hard Mater 28 (2010) 601.

    Article  Google Scholar 

  10. Hoseinpur A, Bafghi M S, Vahdati Khaki J, Int J Refract Met Hard Mater 50 (2015) 191.

    Article  CAS  Google Scholar 

  11. Raj R, Kumari D, Prasad R, Trans Indian Inst Met 72 (2019) 11.

    Article  CAS  Google Scholar 

  12. Aydinyan S V, Manukyan Z, Mater Sci Eng B 172 (2010) 267.

    Article  CAS  Google Scholar 

  13. Torabi O, Golabgir M H, Tajizadegan H, Torabi H, Int J Refract Met Hard Mater 47 (2014) 18.

    Article  CAS  Google Scholar 

  14. Sheybani K, Paydar M H, Shariat M H, Int J Refract Met Hard Mater 82 (2019) 245.

    Article  CAS  Google Scholar 

  15. Saghafi M, Ataie A, Heshmati-Manesh S, Int J Refract Met Hard Mater 29 (2011) 419.

    Article  CAS  Google Scholar 

  16. Ebrahimi-Kahrizsangi R, Abbasi M H, Saidi A, Chem Eng J 121 (2006) 65.

    Article  CAS  Google Scholar 

  17. Hung Z, Zheng L, J Iron Steel Res Int 21 (2013) 51.

    Google Scholar 

  18. Outokumpu R A, HSC Chemistry Software, vol. 5.1 (2002). https://www.hsc-chemistry.com/.

  19. Caballero J A, Conesa J A, J Anal Appl Pyrolysis 73 (2005) 85.

    Article  CAS  Google Scholar 

  20. Vyazovkina S, Burnhamb A K, Criadoc J M, Pere L A, Popescud C, Sbirrazzuol N, Thermochim Acta 520 (2011) 1.

    Article  Google Scholar 

  21. Doweidar H, J Non Cryst Solids 471 (2017) 344.

    Article  CAS  Google Scholar 

  22. Hu H P, Chen Q Y, Yin Z Y, He H Y, Huang H, Trans Nonferr Met Soc China 17 (2007) 205.

    Article  CAS  Google Scholar 

  23. Bakhshandeh S, Setoudeh N, Askari Zamani M A, Mohassel A, J Min Metall Sect B Metall 54 (2018) 313.

    Article  CAS  Google Scholar 

  24. Sah S, Dutta K, Trans Indian Inst Met 64 (2011) 583.

    Article  CAS  Google Scholar 

  25. Bojan J, Srec S, Bemd F, Trans Indian Inst Met 67 (2014) 629.

    Article  Google Scholar 

  26. Chattopadhyay C, Sarkar S, Sangal S, Mondal K, Trans Indian Inst Met 67 (2014) 945.

    Article  Google Scholar 

  27. Kelton K F, J Non Cryst Solids 274 (2000) 147.

    Article  CAS  Google Scholar 

  28. Spillar V, Dolejs D, Geochim Cosmochim Acta 131 (2014) 164.

    Article  CAS  Google Scholar 

  29. Corezzi S, Fioretto D, Santucci G, Kenny J, Polymer 51 (2010) 5833.

    Article  CAS  Google Scholar 

  30. Uche A K, Chude O, Malekian R, Maharaj B T, J Adv Signal Process 89 (2015) 23.

    Google Scholar 

  31. Nagla E, Hefny E, J Phys Sci 28 (2017) 129.

    Article  Google Scholar 

  32. Moukhina E, J Therm Anal Calorim 109 (2012) 1203.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Wight A, Int Rev Phys Chem 17 (1998) 407.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Paydar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheybani, K., Paydar, M.H. & Shariat, M.H. Investigation on the Kinetics and Mechanism of Aluminothermic Reduction of Molybdenum Trioxide: Non-isothermal Kinetics. Trans Indian Inst Met 73, 2875–2888 (2020). https://doi.org/10.1007/s12666-020-02088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02088-3

Keywords

Navigation