Skip to main content
Log in

Tailoring ZE41 Mg Alloy by Friction Stir Processing for Biomedical Applications: Role of Microstructure on the Degradation and Mechanical Behavior in Simulated Body Fluids

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

ZE41 magnesium alloy has been processed by friction stir processing (FSP) with an aim to investigate the role of microstructure on the degradation behavior and mechanical response targeted for temporary orthopedic implant applications. Grain size reduction was achieved in the ZE41 Mg alloy from 107 ± 6.7 µm to 3.5 ± 1.5 µm after FSP. Increased hardness up to 30% was measured in the stir zone of FSPed sample. From the immersion studies done in simulated body fluids (SBFs) for 72 h, decreased weight loss was measured for the FSPed ZE41 compared with unprocessed alloy due to deposition of more Ca/P mineral phase. From the tensile tests, higher ultimate tensile strength was measured for FSPed ZE41 alloy compared with unprocessed alloy. Furthermore, the tensile specimens were exposed to corroding medium SBF for 72 h and then tensile tests were carried out. Result demonstrated the combined effect of grain refinement, decreased intermetallic phase and formation of supersaturated grains on sustaining the improved mechanical properties after degradation which demonstrated the promising role of modified microstructure by FSP on enhancing the strength of ZE41 Mg alloy in the presence of simulated physiological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kirkland N T, Corros Eng Sci Technol 47 (2012) 322.

    CAS  Google Scholar 

  2. Hermawan H, Biodegradable Metals from Concept to Applications, Springer, New York, (2012) p 69.

    Google Scholar 

  3. Wen Z, Wu C, Dai C, and Yang F, J Alloys Compd 488 (2009) 392.

    CAS  Google Scholar 

  4. Rahman Z U, Pompa L, and Haider W, J Mater Sci Mater Med 26 (2015) 217.

    Google Scholar 

  5. Geng L, Zhang B P, Li A B, and Dong C C, Mater Lett 63 (2009) 557.

    CAS  Google Scholar 

  6. Hänzi A C, Gerber I, Schinhammer M, Löffler J F, and Uggowitzer P J, Acta Biomater 6 (2010) 1824.

    Google Scholar 

  7. Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer K U, and Feyerabend F, Acta Biomater 6 (2010) 1714.

    CAS  Google Scholar 

  8. Wan Y, Xiong G, Luo H, He F, Huang Y, and Zhou X, Mater Des 29 (2008) 2034.

    CAS  Google Scholar 

  9. Salahshoor M, and Guo Y. Materials 5 (2012) 135.

    CAS  Google Scholar 

  10. Wang X -H, Ni J -S, Cao N -L, Yu S, Chen Y -G, Zhang S -X, Gu B -J, and Yan J, Sci Rep 7 (2017) 44919.

    CAS  Google Scholar 

  11. Bian D, Deng J, Li N, Chu X, Liu Y, Li W, Cai H, Xiu P, Zhang Y, Guan Z, Zheng Y, Kou Y, Jiang B, and Chen R, ACS Appl Mater Interfaces 10 (2018) 4394.

    CAS  Google Scholar 

  12. Gu X N, Xie X H, Li N, Zheng Y F, and Qin L, Acta Biomater 8 (2012) 2360.

    CAS  Google Scholar 

  13. Brar H S, Wong J, and Manuel M V, J Mech Behav Biomed Mater 7 (2012) 87.

    Google Scholar 

  14. Li Y, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G, and Hodgson P. Acta Biomater 8 (2012) 3177.

    CAS  Google Scholar 

  15. Srinivasan A, Blawert C, Huang Y, Mendis C L, Kainer K U, and Hort N, J Magnes Alloy 2 (2014) 245.

    CAS  Google Scholar 

  16. Chou D -T, Hong D, Saha P, Ferrero J, Lee B, Tan Z, Dong Z, and Kumta P N, Acta Biomater 9 (2013) 8518.

    CAS  Google Scholar 

  17. Riaz U, Shabib I, and Haider W, J Biomed Mater Res: Part B, 107 (2019) 1970.

    CAS  Google Scholar 

  18. Sigrid K, Brunner J G, Ben F, and Sannakaisa V, J Biomed Mater Res Part B: Appl Biomater, 96B (2011) 84.

    Google Scholar 

  19. Witte F, Hort N, Vogt C, Cohen S, Kainer K U, Willumeit R, and Feyerabend F, Curr Opin Solid State Mater Sci 12 (2008) 63.

    CAS  Google Scholar 

  20. Zeng R, and Dietzel W, Adv Eng Mater 10 (2018) B3.

    Google Scholar 

  21. Shaylin S, and George J D, Acta Biomater 8 (2012) 20.

    Google Scholar 

  22. Zeng R, Witte F, Dietzel W, Hort N, and Blawert C, Adv Eng Mater 10 (2008) B3.

    CAS  Google Scholar 

  23. Trivedi P, Nune K C, and Misra R D K, Mater Tech: Advanced Perform Mater 31 (2016) 726.

    CAS  Google Scholar 

  24. Trivedi P, Nune K C, Misra R D K, Patel A K, Balani K and Jayganthan R, Mater Tech: Advanced Perform Mater 31 (2016) 836.

    CAS  Google Scholar 

  25. Asl K M, Tari A, and Khomamizadeh F, Mater Sci Eng A 523 (2009) 1.

    Google Scholar 

  26. Sunil B R, Kumar T S, Chakkingal U, Nandakumar V, Doble M, Prasad V D, and Raghunath M, Mater. Sci Eng C 59 (2016) 356.

    Google Scholar 

  27. Trivedi P, Nune K C, and Misra R D K, Surf Coat Technol 315 (2017)250.

    CAS  Google Scholar 

  28. Dieter Jr G E, Mechanical Metallurgy, McGraw Hill, New York (1961), p 184.

    Google Scholar 

  29. Thirugnanam A, Kumar T S, and Uday Chakkingal, Mat Sci Eng C 30 (2010) 203.

    CAS  Google Scholar 

  30. Sunil B R, Kumar T S, and Chakkingal U, Mater Sci Forum 710 (2012) 264.

    CAS  Google Scholar 

  31. Alvarez-Lopez M, Pereda M D, Del Valle J A, Fernandez-Lorenzo M, Garcia-Alonso M C, Ruano O A, and Escudero M L, Acta Biomater 6 (2010) 1763.

    CAS  Google Scholar 

  32. Argade G R, Panigrahi S K, and Mishra R S, Corros Sci 58 (2012) 145.

    CAS  Google Scholar 

  33. Argade G R, Kandasamy K, Panigrahi S K, and Mishra R S, Corros Sci 58 (2012) 321.

    CAS  Google Scholar 

  34. Venkataiah M, Kumar T A, Rao K V, Kumar S A, Siva I, and Sunil B R, Trans Ind Inst Met 72 (2019) 123.

    CAS  Google Scholar 

  35. Kumar N P, Naveen C H, Sujatha D, Anandarao D, Sireesha J N, Kumar S A, Siva I, Venkateswarlu B, Jagannatham M, and Sunil B R, Matl Tech Adv Perf Matl 33 (2018) 603.

    Google Scholar 

  36. Prasad U S, Kondaiah V V, Akhil K, Kumar V V, Nagamani B, Jhansi K, Dumpala R, Venkateswarlu B, and Sunil B R, Koroze A Ochrana Materiálu 63 (2019) 79.

    Google Scholar 

  37. Kondaiah V V, Pavanteja P, Manvit M M, Kumar R R, Kumar R G, and Sunil B R, Mater Today: Proc 18 (2019) 125.

    CAS  Google Scholar 

  38. Kokubo T, and Takadama H, Biomaterials 27 (2006) 2907.

    CAS  Google Scholar 

  39. ASTM Standard, E8/E8M-11. Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, USA (2009).

    Google Scholar 

  40. Arbegast W J, in Hot Deformation of Aluminum Alloys III, (eds) Jin Z, Beaudoin A, Bieler T A, Radhakrishnan B, TMS, Warrendale, PA, USA (2003), p. 313.

    Google Scholar 

  41. Mishra R S, and Ma Z Y, Mat Sci Eng R 50 (2005) 14.

    Google Scholar 

  42. Kiran G S, Krishna K H, Sameer S, Bhargavi M, Kumar B S, Rao G M, Naidubabu Y, Dumpala R, and Sunil B R, Trans Nonferrous Met Soc China 27 (2017) 804.

    Google Scholar 

  43. Patle H, Dumpala R, and Sunil BR, Trans Ind Inst Met, 71 (2018) 951.

    CAS  Google Scholar 

  44. Sunil B R, Thirugnanam A, Chakkingal U, and Kumar T S, Mater Tech: Adv Perform Mater 31 (2016) 743.

    Google Scholar 

  45. Puleo D A, and Nanci A, Biomaterials 20 (1999) 2311.

    CAS  Google Scholar 

  46. Zhang L, and Webster T J, Nano Today 4 (2009) 66.

    CAS  Google Scholar 

  47. Wang Y, Wei M, Gao J, Hu J, and Zhang Y, Mater Lett 62 (2008) 2181.

    Google Scholar 

  48. Witte F, Fischer J, Nellesen J, Crostack H A, Kaese V, Pisch A, Beckmann F, and Windhagen H, Biomaterials 27 (2006) 1013.

    CAS  Google Scholar 

  49. Decker R F, Berman T D, Miller V M, Jones J W, Pollock T M, and LeBeau S E, JOM 71 (2019) 2219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kiran Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran Babu, B., Jawahar Babu, A. & Ranga Janardhana, G. Tailoring ZE41 Mg Alloy by Friction Stir Processing for Biomedical Applications: Role of Microstructure on the Degradation and Mechanical Behavior in Simulated Body Fluids. Trans Indian Inst Met 73, 2889–2899 (2020). https://doi.org/10.1007/s12666-020-02090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02090-9

Keywords

Navigation