Skip to main content
Log in

Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced from reference [68] with permission of The Royal Society of Chemistry RSC 2020

Fig. 6

Reproduced from reference [13] under a Creative Commons Attribution Non-commercial Non-Derivative 4.0 International license (CC BY-NC-ND 4.0)

Fig. 7
Fig. 8

Reproduced from reference [99] with permission of The Royal Society of Chemistry RSC 2020. e, f are reproduced from [84] with permission of The Royal Society of Chemistry RSC 2020

Fig. 9

Reproduced from reference [88] with permission of The Royal Society of Chemistry RSC 2020

Similar content being viewed by others

References

  1. Schlögl R (2015) The revolution continues: Energiewende 2.0. Angew Chem Int Ed 54:4436–4439

    Google Scholar 

  2. Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486

    Google Scholar 

  3. Wang ZL, Wu W (2012) Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew Chem Int Ed 51:11700-11721

    CAS  Google Scholar 

  4. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283

    CAS  Google Scholar 

  5. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739

    CAS  Google Scholar 

  6. Boudghere Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFC): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455

    Google Scholar 

  7. Qiao Y, Li CM (2011) Nanostructured catalyst in fuel cells. J Mater Chem 21:4027–4036

    CAS  Google Scholar 

  8. Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards sustainable energy future. Energy Policy 36:4356–4362

    Google Scholar 

  9. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy 13:2430–2440

    CAS  Google Scholar 

  10. Kerzenmacher S, Ducree J, Zengerle R, von Stetten F (2008) An abiotically catalyzed glucose fuel cell for powering medical implants: reconstructed manufacturing protocol and analysis of performance. J Power Sources 182:66–75

    CAS  Google Scholar 

  11. Drake RF, Kusserow BK, Messinger S, Matsuda S (1970) A tissue implantable fuel cell power supply. Trans Am Soc Artif Intern Organs 16:199–205

    CAS  PubMed  Google Scholar 

  12. Giner J, Holleck G, Malachesky PA (1973) Eine implantierbare Brennstoffzelle zum Betrieb eines mechanischen Herzens. Phys Chem 77:782–783. https://doi.org/10.1002/bbpc.19730771009

    Article  Google Scholar 

  13. Cosnier S, LeGoff A, Holzinger M (2014) Towards glucose biofuel cells implanted in human body for powering artificial organs: review. Electrochem Commun 38:19–23

    CAS  Google Scholar 

  14. Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12

    Google Scholar 

  15. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006a) Biofuel cells and their development . Biosens Bioelectron 21:2015–2045

    CAS  PubMed  Google Scholar 

  16. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    CAS  Google Scholar 

  17. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461

    CAS  PubMed  Google Scholar 

  18. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  19. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006b) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    CAS  PubMed  Google Scholar 

  20. Koch C, Popiel D, Harnisch F (2014) Functional redundancy of microbial anodes fed by domestic wastewater. ChemElectroChem 1:1923–1931

    CAS  Google Scholar 

  21. Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose−O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594

    CAS  PubMed  Google Scholar 

  22. Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963

    CAS  PubMed  Google Scholar 

  23. Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17:1866

    PubMed Central  Google Scholar 

  24. Falk M, Blum Z, Shleev S (2012) Direct electron transfer based enzymatic fuel cells. Electrochim Acta 82:191–202

    CAS  Google Scholar 

  25. White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    CAS  PubMed  Google Scholar 

  26. Broderick JB (2001) Coenzymes and cofactors. In: eLS. Wiley, Chichester. https://www.els.net. https://doi.org/10.1038/npg.els.0000631

  27. Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229

    CAS  PubMed  Google Scholar 

  28. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotech Adv 27:489–501

    CAS  Google Scholar 

  29. Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076

    PubMed  PubMed Central  Google Scholar 

  30. Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environ Sci 6:2791–2803

    CAS  Google Scholar 

  31. Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme catalysed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9:661–674

    CAS  Google Scholar 

  32. Von Woedtke Th, Fisher U, Abel P (1994) Glucose oxidase electrodes: effect of H2O2 on enzyme activity? Biosens Bioelectron 9:65–71

    Google Scholar 

  33. Kleppe K (1966) The effect of H2O2 on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143

    CAS  PubMed  Google Scholar 

  34. Zebda A, Godran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370

    PubMed  Google Scholar 

  35. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    CAS  Google Scholar 

  36. Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, Sabbatini L, Fine D, Dodabalapur A, Lioffi N, Torsi L (2011) Carbon based nanomaterials for electronic bio-sensing. Mat Today 14:424–433

    CAS  Google Scholar 

  37. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431

    CAS  PubMed  Google Scholar 

  39. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem Soc Rev 42:2824–2860

    CAS  PubMed  Google Scholar 

  40. Babadi AA, Bagheri S, Abdul Hamid SB (2016) Progress on implantable biofuel cell: nano-carbon functionalization for enzyme immobilization enhancement. Biosens Bioelectron 15:850–860

    Google Scholar 

  41. Osadebe I, Leech D (2014) Effect of multi-walled carbon nanotubes on glucose oxidation by glucose oxidase or a flavin-dependent glucose dehydrogenase in redox-polymer-mediated enzymatic fuel cell anodes. ChemElectroChem 1:1988–1993

    CAS  Google Scholar 

  42. Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502

    CAS  Google Scholar 

  43. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1:4878–4908

    CAS  PubMed  Google Scholar 

  45. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    PubMed  Google Scholar 

  46. Ivanov I, Vidaković-Koch T, Sundmaker K (2010) Recent advances in enzymatic fuel cells; experiments and modelling. Energies 3:803–846

    CAS  Google Scholar 

  47. Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163

    Google Scholar 

  48. Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee DH, Park CH, Yeo JM, Kim SW (2006) Lipase immobilization on silica gel using a cross-linking method. J Ind Eng Chem 12(5):777–782

    CAS  Google Scholar 

  50. Szymańska K, Bryjak J, Jarzębski AB (2009) Immobilization of invertase on mesoporous silicas to obtain hyper active biocatalysts. Top Catal 52:1030–1036

    Google Scholar 

  51. Al-Lolage F, Meneghello M, Ma S, Ludwig R, Barlett PN (2017) A flexible method for the stable, covalent immobilization of enzymes at electrode surfaces. ChemElectroChem 4:1528–1534

    CAS  Google Scholar 

  52. Gutierrez-Sanchez C, Shleev S, De Lacey AL, Pita M (2015) Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode. Chem Pap 69:237–240

    CAS  Google Scholar 

  53. Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74

    CAS  PubMed  Google Scholar 

  54. Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, de Lacey LA (2008) Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Biosens Bioelectron 24(4):531–537

    CAS  PubMed  Google Scholar 

  55. Gutiérrez-Sánchez C, Jia W, Beyl Y, Pita M, Schuhmann W, de Lacey LA, Stoica L (2012) Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods. Electrochim Acta 82:218–223

    Google Scholar 

  56. Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13(10):1767–1776

    CAS  Google Scholar 

  57. Zhao C, Gai P, Song R, Chen Y, Zhang J, Zhu J-J (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564

    CAS  PubMed  Google Scholar 

  58. Yu EH, Scott K (2010) Enzymatic biofuel cells—fabrication of enzyme electrodes. Energies 3:23–42

    CAS  Google Scholar 

  59. Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2013) New materials for biological fuel cells. Mater Today 15(4):166–173

    Google Scholar 

  60. Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    CAS  PubMed  Google Scholar 

  61. Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorption 20:801–821

    CAS  Google Scholar 

  62. Sardar M, Gupta MN (2005) Immobilization of tomato pectinase on Con A-Seralose 4B by bioaffinity layering. Enzyme Microbial Technol 37:355–359

    CAS  Google Scholar 

  63. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Velasco-Lozano S, López-Gallego F, Mateos-Díaz JC, Favela-Torres E (2015) Cross-linked enzyme aggregates (CLEA) in enzyme improvement—a review. Biocatalysis 1:166–177

    Google Scholar 

  65. Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosen Bioelectron 14:443–456

    CAS  Google Scholar 

  66. Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 29:128–134

    Google Scholar 

  67. Heller A (1992) Electrical connection of enzyme redox centres to electrodes. J Phys Chem 96:3579–3587

    CAS  Google Scholar 

  68. Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436

    CAS  PubMed  Google Scholar 

  69. Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics. Kinetics and challenges in applicability. ChemElectroChem 1(11):1751–1777

    CAS  Google Scholar 

  70. Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24(12):1891–1912

    Google Scholar 

  71. Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6):6 e38436

    PubMed  Google Scholar 

  72. Zebda A, Alcaraz J-P, Vadgama P, Shleev S, Minteer SD, Boucher F, Cinquin P, Martin DK (2018) Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124:57–72

    CAS  PubMed  Google Scholar 

  73. Ferraris RP, Diamond J (1997) Regulation of intestinal sugar transport. Physiol Rev 77:257–301

    CAS  PubMed  Google Scholar 

  74. Sprague JE, Arbeláez AM (2011) Glucose counterregulatory responses to hypoglicemia. Pediatr Endocrinol Rev 9:463–475

    PubMed  PubMed Central  Google Scholar 

  75. Slaughter G, Kulkarni T (2019) Detection of human plasma glucose using a self-powered glucose biosensor. Energies 12:825

    CAS  Google Scholar 

  76. Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54

    PubMed  Google Scholar 

  77. Koushanpour A, Gamella M, Katz E (2017) A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—extracting electrical power from human sweat. Electroanalysis 29:1602–1611

    CAS  Google Scholar 

  78. Yao Y, Li H, Wang D, Liu C, Zhang C (2017) An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 142:3715–3724

    CAS  PubMed  Google Scholar 

  79. Pankratov D, González-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28:1250–1266

    CAS  Google Scholar 

  80. Krogstad AL, Jansson PA, Gisslen P, Lönnroth P (1996) Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br J Dermatol 134(6):1005–1012

    CAS  PubMed  Google Scholar 

  81. Bandodkar AJ, Wang J (2016) Wearable biofuel cells: a review. Electroanalysis 28:1188–1200

    CAS  Google Scholar 

  82. Jia W, Valdés-Ramírez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:1–5

    Google Scholar 

  83. Jeerapan I, Sempionatto JR, Pavinatto A, You J-M, Wang J (2016) Stretchable biofuel cells as wearable textile-based self-powered sensors. J Mater Chem A 4:18342–18353

    CAS  Google Scholar 

  84. Valdés-Ramírez G, Li Y-G, Kima J, Jia W, Bandodkar AJ, Nuñez-Flores R, Miller PR, Wu S-Y, Narayan R, Windmiller JR, Polsky R, Wang J (2016) Microneedle-based self-powered glucose sensor. Electrochem Commun 47:58–62

    Google Scholar 

  85. Gamella M, Koushanpour A, Katz E (2018) Biofuel cells—activation of micro- and macro- electronic devices. Bioelectrochemistry 119:33–42

    CAS  PubMed  Google Scholar 

  86. Mano N, Mao F, Shin W, Chen T, Heller A (2003) A miniature biofuel cell operating at 0.78 V. Chem Commun 20:518–519

    Google Scholar 

  87. Shi B, Li Z, Fan Y (2018) Implantable energy harvesting devices. Adv Mater 30:1801511

    Google Scholar 

  88. MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86

    CAS  Google Scholar 

  89. Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environ Sci 5:8891–8895

    CAS  Google Scholar 

  90. Southcott M, MacVittie K, Halámek J, Halámková L, Jemison WD, Lobel R, Katz E (2013) A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system—battery not included. Phys Chem Chem Phys 15:6278–6283

    CAS  PubMed  Google Scholar 

  91. MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33

    CAS  PubMed  Google Scholar 

  92. Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, Min B-K, Joo SW (2016) Glucose-based biofuel cells: nanotechnology as a vital science in biofuel cell performance. Nanochem Res 1(2):83–204

    Google Scholar 

  93. Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Single glucose biofuel cells implanted in rats power electronic devices. Sci Rep 2013:1516

    Google Scholar 

  94. Ichi-Ribault SE, Alcaraz J-P, Boucher F, Boutaud B, Dalmolin R, Boutonnat J, Cinquin P, Zebda A, Martin DK (2018) Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months. Electrochim Acta 269:360–366

    Google Scholar 

  95. Bandodkar A (2017) Review—wearable biofuel cells: past, present and future. J Electrochem Soc 164(3):H3007–H3014

    CAS  Google Scholar 

  96. Coman V, Ludwig R, Harreither W, Haltrich D, Gorton L, Ruzgas T, Shleev S (2010) A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 10(1):9–16

    CAS  Google Scholar 

  97. Shoji K, Akiyama Y, Suzuki M, Nakamura N, Ohno H, Morishima K (2016) Biofuel cell backpacked insect and its application to wireless sensing. Biosens Bioelectron 78:390–395

    CAS  PubMed  Google Scholar 

  98. Reuillard B, Abreu C, Lalaoui N, Le Goff A, Holzinger M, Ondel O, Buret F, Cosnier S (2015) One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry 106:73–76

    CAS  PubMed  Google Scholar 

  99. Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes. Lab Chip 13:468

    CAS  PubMed  Google Scholar 

  100. Falk M, Narvez Villarrubia CW, Babanova S, Atanassov P, Shleev S (2013) Biofuel cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 14:2045–2058

    CAS  PubMed  Google Scholar 

  101. Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460

    CAS  PubMed  Google Scholar 

  102. Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043

    PubMed  Google Scholar 

  103. Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellisier A, Boucher F, Alcaraz J-P, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. Plos One 5(5):e010476

    Google Scholar 

  104. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan S, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491

    CAS  Google Scholar 

  105. Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S (2013) Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons

  106. Verbeek MM, Leen WG, Willemsen MA, Slats D, Claassen JA (2016) Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations. J Cereb Blood F Met 36(5):899–902

    CAS  Google Scholar 

  107. González-Guerrero MJ, Del Campo FJ, Esquivel JP, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectron 90:475–480

    PubMed  Google Scholar 

  108. Takeuchi ES, Leising RA (2002) Lithium batteries for biomedical applications. MRS Bull 27(8):624–627

    CAS  Google Scholar 

  109. Bock DC, Marschilok A, Takeuchi KJ, Takeuchi ES (2012) Batteries used to power implantable biomedical devices. Electrochim Acta 84:155–164

    CAS  Google Scholar 

  110. Greatbatch W, Lee JH, Mathias W, Eldridge M, Moser JR, Schneider AA (1971) The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemaker. IEEE Trans Biomed Eng 18(5):317–324

    CAS  PubMed  Google Scholar 

  111. Liu Y, Dong S (2007) A biofuel cell with enhanced power output by grape juice. Electrochem Commun 9(7):1423–1427

    CAS  Google Scholar 

  112. Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218

    CAS  PubMed  Google Scholar 

  113. Zhou L, Mao J, Ren Y, Han ST, Roy VAL, Zhou Y (2018) Recent advances of flexible data storage devices based on organic nanoscale materials. Small 14(10):1703126

    Google Scholar 

  114. Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kong K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283

    CAS  Google Scholar 

  115. Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Pol Sci 130:1429–1441

    CAS  Google Scholar 

  116. Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotech 32(7):363–371

    CAS  Google Scholar 

  117. Bandodkar AJ, Uia W, Wang J (2015) Tatto-based wearable electrochemical devices: a review. Electroanalysis 27(3):562–572

    CAS  Google Scholar 

  118. Reid RC, Minteer SD, Gale BK (2015) Contact lens biofuel cell tested in a synthetic tear solution. Biosens Bioelectron 68:142

    CAS  PubMed  Google Scholar 

  119. Falk M, Andoralov V, Blum Z, Sotres J, Suyatin DM, Ruzgas T, Arnebrant T, Shleev S (2012) Biofuel cells as a power source for electronic contact lenses. Biosens Bioelectron 37(1):38–45

    CAS  PubMed  Google Scholar 

  120. Falk M, Andoralov V, Silow M, Toscano MD, Shleev S (2013) Miniature biofuel cell as a potential power source for Glucose-sensing contact lenses. Anal Chem 85(13):6342–6348

    CAS  PubMed  Google Scholar 

  121. Reid R, Jones SR, Hickey DP, Minteer SD, Gale BK (2016) Modeling carbon nanotubes connectivity and surface activity in a contact lens biofuel cell. Electrochim Acta 203:30–40

    CAS  Google Scholar 

  122. Blum Z, Pankratov D, Shleev S (2014) Powering electronic contact lenses: current achievements, challenges and perspective. Expert Rev Ophthalmol 9(4):269–273

    CAS  Google Scholar 

  123. Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E (2018) Nanoporous gold-based biofuel cell on contact lenses. ACS Appl Mater Interfaces 10(8):7107–7116

    CAS  PubMed  Google Scholar 

  124. Yang X-Y, Tian G, Jiang N, Su B-L (2012) Immobilization technology: a sustainable solution for biofuel cell design. Ener Environ Sci 5:5540–5563

    CAS  Google Scholar 

  125. Mano N (2019) Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128:218–240

    CAS  PubMed  Google Scholar 

  126. Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey LA, Ludwig R, Shleev S, Alcalde M (2013) Blood tolerant caccase by directed evolution. Chem Biol 20:223–231

    CAS  PubMed  Google Scholar 

  127. Zhang L, Carucci C, Reculusa S, Goudeau B, Lefrançois P, Gounel S, Mano N, Kuhn A (2019) Rational design of enzyme-modified electrodes for optimized bioelectrocatalytic activity. ChemElectroChem 6(19):4980–4984

    CAS  Google Scholar 

  128. Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585

    CAS  Google Scholar 

  129. Yang Y, Wang ZL (2015) Hybrid energy cells for simultaneously harvesting multi-types of energies. NanoEnergy 14:245–256

    CAS  Google Scholar 

  130. Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:3647

    CAS  PubMed  Google Scholar 

  131. Song K, Han JH, Lim T, Kim N, Shin S, Kim J, Choo H, Jeong S, Kim Y-C, Wang ZL, Lee J (2016) Subdermal flexible solar cell arrays for powering medical electronic implants. Adv Healthc Mater 5:1572–1580

    CAS  PubMed  Google Scholar 

  132. Nasar A, Perveen R (2019) Applications of enzymatic biofuel cells in bioelectronic devices—a review. Int J Hydrogen Energy 44:15287–15312

    CAS  Google Scholar 

  133. Zhao M, Gao Y, Sun J, Gao F (2015) Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem 87:2615–2622

    CAS  PubMed  Google Scholar 

  134. Bandodkar AJ, You J-M, Kim N-H, Gu Y, Kumar R, Mohan AMV, Kurniawan J, Imani S, Nakagawa T, Parish B, Parthasarathy M, Mercier PP, Xu S, Wang J (2017) Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ Sci 10:1581–1589

    Google Scholar 

  135. Bautista MG, Dutkiewicz E, Heimlich M (2015) Subthreshold energy harvesters circuits for biomedical implants applications. BODYNETS 2015, September 28–30, Sydney, Australia. https://doi.org/10.4108/eai.28-9-2015.2261402

  136. Flipsen B, Bremer A, Jansen A, Veefkind M (2004) Proceedings of the TMCE 2004, April 12–16, Lausanne, Switzerland

Download references

Acknowledgements

Financial support from the Spanish Ministry of Science, Innovation and University, through the State Program for Talent and Employability Promotion 2013–2016 by means of Torres Quevedo research contract in the framework of Bio2 project (PTQ-14-07145) and from the Instituto Valenciano de Competitividad Empresarial-IVACE-GVA (BioSensCell project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Buaki-Sogó.

Ethics declarations

Conflict of interest

On behalf of all authors, Mireia Buaki-Sogó states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buaki-Sogó, M., García-Carmona, L., Gil-Agustí, M. et al. Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices. Top Curr Chem (Z) 378, 49 (2020). https://doi.org/10.1007/s41061-020-00312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-020-00312-8

Keywords

Navigation