Skip to main content
Log in

Ag2O–Al2O3–ZrO2 Trimetallic Nanocatalyst for High Performance Photodegradation of Nicosulfuron Herbicide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, Ag2O–Al2O3–ZrO2 based trimetallic oxide nanocatalyst was designed using simple microwave assisted reduction method. It was characterized using various techniques such as Fourier transform-infrared (FT-IR), X-ray diffractometer (XRD), electron microscopy [scanning electron microscope (SEM), transmission electron microscope (TEM)] and X-ray photoelectron spectroscope (XPS). It was utilized for the degradation of nicosulfuron herbicide and the influence of microwave (MW) and UV radiations on the degradation rate was also studied. Maximum of 78% degradation was obtained within 50 min. Scavenging studies showed the major involvement of ·OH and ·O2 radicals in the degradation process. Possible heterostructures (traditional and Z-scheme) with their possible charge transfer were also studied. Nyquist plots and photoluminescence (PL) analysis showed the high charge transfer and lowered recombination in Ag2O–Al2O3–ZrO2. Possible degradation mechanism was also developed using LC–MS. Reusability studies were carried out for consecutive 5 cycles and results indicated the appreciable photocatalytic ability after every repeated cycles.

Graphic Abstract

Traditional and Z-scheme heterostructure for Ag2O–Al2O3–ZrO2 trimetallic nanocatalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1.
Fig. 10

Similar content being viewed by others

References

  1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Article  CAS  Google Scholar 

  2. Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6(2):48–60

    Article  Google Scholar 

  3. Debabrata P, Sivakumar M (2018) Sonochemical degradation of endocrine-disrupting organochlorine pesticide dicofol: investigations on the transformation pathways of dechlorination and the influencing operating parameters. Chemosphere 204:101–108

    Article  CAS  Google Scholar 

  4. Van de Merwe JP, Neale PA, Melvin SD, Leusch FD (2018) In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides. Aquat Toxicol 199:263–268

    Article  Google Scholar 

  5. Regitano JB, Koskinen WC (2008) Characterization of nicosulfuron availability in aged soils. J Agric Food Chem 56(14):5801–5805

    Article  CAS  Google Scholar 

  6. Dugandžić AM, Tomašević AV, Radišić MM, Šekuljica NŽ, Mijin DŽ, Petrović SD (2017) Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron. J Photochem Photobiol A 336:146–155

    Article  Google Scholar 

  7. Dang J, Tian S, Zhang Q (2019) Mechanism and kinetics studies of the atmospheric oxidation of p, p'-Dicofol by OH and NO3 radicals. Chemosphere 219:645–654

    Article  CAS  Google Scholar 

  8. Sharma G, Dionysiou DD, Sharma S, Kumar A, Ala’a H, Naushad M, Stadler FJ (2019) Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal Today 335:437–451

    Article  CAS  Google Scholar 

  9. Pathania D, Sharma G, Kumar A, Kothiyal NC (2014) Fabrication of nanocomposite polyaniline zirconium(IV) silicophosphate for photocatalytic and antimicrobial activity. J Alloy Compd 588:668–675. https://doi.org/10.1016/j.jallcom.2013.11.133

    Article  CAS  Google Scholar 

  10. Sharma G, Kumar A, Sharma S, AaH A-M, Naushad M, Ghfar AA, Ahamad T, Stadler FJ (2019) Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye. Sep Purif Technol 211:895–908. https://doi.org/10.1016/j.seppur.2018.10.028

    Article  CAS  Google Scholar 

  11. Sharma G, Kumar A, Naushad M, Kumar A, AaH A-M, Dhiman P, Ghfar AA, Stadler FJ, Khan MR (2018) Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. J Clean Prod 172:2919–2930. https://doi.org/10.1016/j.jclepro.2017.11.122

    Article  CAS  Google Scholar 

  12. Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421. https://doi.org/10.1016/j.cej.2014.04.074

    Article  CAS  Google Scholar 

  13. Sharma G, Pathania D, Naushad M (2014) Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 21(4):1045–1055. https://doi.org/10.1007/s11581-014-1269-y

  14. Sharma G, Naushad M (2020) Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling. J Mol Liq 310:113025. https://doi.org/10.1016/j.molliq.2020.113025

  15. Sharma G, Naushad M, AaH A-M, Kumar A, Khan MR, Kalia S, Shweta S, Bala M, Sharma A (2017) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493. https://doi.org/10.1016/j.ijbiomac.2016.11.072

  16. Panda D, Manickam S (2019) Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: optimization of operating parameters and investigations on the mechanism of intensification. Ultrason Sonochem 51:526–532

    Article  CAS  Google Scholar 

  17. Kumar A, Sharma SK, Sharma G, AaH A-M, Naushad M, Ghfar AA, Stadler FJ (2019) Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: elucidating the photocatalytic mechanism under different light sources. J Hazard Mater 364:429–440. https://doi.org/10.1016/j.jhazmat.2018.10.060

    Article  CAS  Google Scholar 

  18. Vulliet E, Emmelin C, Chovelon J-M (2004) Influence of pH and irradiation wavelength on the photochemical degradation of sulfonylureas. J Photochem Photobiol A 163(1–2):69–75

    Article  CAS  Google Scholar 

  19. Benzi M, Robotti E, Gianotti V (2013) Study on the photodegradation of amidosulfuron in aqueous solutions by LC-MS/MS. Environ Sci Pollut Res 20(12):9034–9043

    Article  CAS  Google Scholar 

  20. ter Halle A, Lavieille D, Richard C (2010) The effect of mixing two herbicides mesotrione and nicosulfuron on their photochemical reactivity on cuticular wax film. Chemosphere 79(4):482–487

    Article  Google Scholar 

  21. Horikoshi S, Hidaka H, Serpone N (2002) Environmental remediation by an integrated microwave/UV-illumination method 1 Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions. Environ Science Technol 36(6):1357–1366

    Article  CAS  Google Scholar 

  22. Jiang W, Wang X, Wu Z, Yue X, Yuan S, Lu H, Liang B (2015) Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism. Ind Eng Chem Res 54(3):832–841

    Article  CAS  Google Scholar 

  23. Wang G, Ma X, Huang B, Cheng H, Wang Z, Zhan J, Qin X, Zhang X, Dai Y (2012) Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J Mater Chem 22(39):21189–21194

    Article  CAS  Google Scholar 

  24. Liang N, Wang M, Jin L, Huang S, Chen W, Xu M, He Q, Zai J, Fang N, Qian X (2014) Highly efficient Ag2O/Bi2O2CO3 pn heterojunction photocatalysts with improved visible-light responsive activity. ACS Appl Mater Interfaces 6(14):11698–11705

    Article  CAS  Google Scholar 

  25. Zhang X, Su H, Yang X (2012) Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis. J Mol Catal A 360:16–25

    Article  CAS  Google Scholar 

  26. Zhang W, Cui Y, Hu Z, Yu W, Sun J, Xu N, Ying Z, Wu J (2012) Structural, optical and electrical properties of high-k ZrO2 dielectrics on Si prepared by plasma assisted pulsed laser deposition. Thin Solid Films 520(20):6361–6367

    Article  CAS  Google Scholar 

  27. Fan M, Hu S, Ren B, Wang J, Jing X (2013) Synthesis of nanocomposite TiO2/ZrO2 prepared by different templates and photocatalytic properties for the photodegradation of Rhodamine B. Powder Technol 235:27–32

    Article  CAS  Google Scholar 

  28. Qin G, Sun Z, Wu Q, Lin L, Liang M, Xue S (2011) Dye-sensitized TiO2 film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol. J Hazard Mater 192(2):599–604

    Article  CAS  Google Scholar 

  29. Karunakaran C, Magesan P, Gomathisankar P, Vinayagamoorthy P (2013) Photocatalytic degradation of dyes by Al2O3-TiO2 and ZrO2-TiO2 nanocomposites. In: Materials Science Forum. Trans Tech Publ, pp 325–333

  30. Rahman A, Sabeeh H, Zulfiqar S, Agboola PO, Shakir I, Warsi MF (2020) Structural, optical and photocatalytic studies of trimetallic oxides nanostructures prepared via wet chemical approach. Synth Met 259:116228

    Article  CAS  Google Scholar 

  31. Azri N, Bakar WAWA, Ali R (2016) Optimization of photocatalytic degradation of polybrominated diphenyl ether on trimetallic oxide Cu/Ni/TiO2/PVC catalyst using response surface methodology method. J Taiwan Inst Chem Eng 62:283–296

    Article  CAS  Google Scholar 

  32. Subhan MA, Uddin N, Sarker P, Azad AK, Begum K (2015) Photoluminescence, photocatalytic and antibacterial activities of CeO2ĚCuOĚZnO nanocomposite fabricated by co-precipitation method. Spectrochim Acta A 149:839–850

    Article  CAS  Google Scholar 

  33. Sen B, Demirkan B, Şavk A, Gülbay SK, Sen F (2018) Trimetallic PdRuNi nanocomposites decorated on graphene oxide: a superior catalyst for the hydrogen evolution reaction. Int J Hydrogen Energy 43(38):17984–17992

    Article  CAS  Google Scholar 

  34. Kadam A, Dhabbe R, Gophane A, Sathe T, Garadkar K (2016) Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange. J Photochem Photobiol B 154:24–33

    Article  CAS  Google Scholar 

  35. Ali APAS, Mohammed AJ, Saud HR (2018) Hydrothermal synthesis of TiO2/Al2O3 nanocomposite and its application as improved sonocatalyst. Int J Eng Technol 7(437):22–25

    CAS  Google Scholar 

  36. Khataee A, Kayan B, Gholami P, Kalderis D, Akay S, Dinpazhoh L (2017) Sonocatalytic degradation of reactive yellow 39 using synthesized ZrO2 nanoparticles on biochar. Ultrason Sonochem 39:540–549

    Article  CAS  Google Scholar 

  37. Wei N, Cui H, Song Q, Zhang L, Song X, Wang K, Zhang Y, Li J, Wen J, Tian J (2016) Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl Catal B 198:83–90. https://doi.org/10.1016/j.apcatb.2016.05.040

    Article  CAS  Google Scholar 

  38. Fu X, Tang W, Ji L, Chen S (2012) V2O5/Al2O3 composite photocatalyst: preparation, characterization, and the role of Al2O3. Chem Eng J 180:170–177

    Article  CAS  Google Scholar 

  39. Liu W-J, Zeng F-X, Jiang H, Zhang X-S, Li W-W (2012) Composite Fe2O3 and ZrO2/Al2O3 photocatalyst: preparation, characterization, and studies on the photocatalytic activity and chemical stability. Chem Eng J 180:9–18

    Article  CAS  Google Scholar 

  40. Hu L, Hu H, Lu W, Lu Y, Wang S (2019) Novel composite BiFeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation. Mater Res Bull 120:110605. https://doi.org/10.1016/j.materresbull.2019.110605

    Article  CAS  Google Scholar 

  41. Reddy CV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44(6):6940–6948. https://doi.org/10.1016/j.ceramint.2018.01.123

    Article  CAS  Google Scholar 

  42. Zhou H, Shi X, Lu G, Chen Y, Yang Z, Wu C, Xue Y, Ibrahim AMM (2020) Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles. Surf Coat Technol 387:125552. https://doi.org/10.1016/j.surfcoat.2020.125552

    Article  CAS  Google Scholar 

  43. Clark DT, Fok T, Roberts GG, Sykes RW (1980) An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for Langmuir film deposition. Thin Solid Films 70(2):261–283. https://doi.org/10.1016/0040-6090(80)90367-3

    Article  CAS  Google Scholar 

  44. Zhou C, Lai C, Xu P, Zeng G, Huang D, Zhang C, Cheng M, Hu L, Wan J, Liu Y (2018) In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism. ACS Sustain Chem Eng 6(3):4174–4184

    Article  CAS  Google Scholar 

  45. Sharma G, Kumar A, Sharma S, Naushad M, Ahamad T, Al-Saeedi SI, Al-Senani GM, Al-Kadhi NS, Stadler FJ (2018) Facile fabrication of Zr2Ni1Cu7 trimetallic nano-alloy and its composite with Si3N4 for visible light assisted photodegradation of methylene blue. J Mol Liq 272:170–179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (M. Alam) is grateful to the Researchers Supporting Project Number (RSP-2020/113), King Saud University, Riyadh, Saudi Arabia for the financial support. We are also thankful to Shoolini University, India for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhogal, S., Sharma, G., Kumar, A. et al. Ag2O–Al2O3–ZrO2 Trimetallic Nanocatalyst for High Performance Photodegradation of Nicosulfuron Herbicide. Top Catal 63, 1272–1285 (2020). https://doi.org/10.1007/s11244-020-01381-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01381-1

Keywords

Navigation