Skip to main content

Advertisement

Log in

Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboulaich N, Vainonen JP, Strålfors P, Vener AV (2004) Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem J 383:237–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23:6967–6979

    CAS  PubMed  Google Scholar 

  • Aoki S, Thomas A, Decaffmeyer M, Brasseur R, Epand RM (2010) The role of proline in the membrane re-entrant helix of caveolin-1. J Biol Chem 285:33371–33380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol Ren, Physiol

    Google Scholar 

  • Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059

    CAS  PubMed  Google Scholar 

  • Ardissone A, Bragato C, Caffi L, Blasevich F, Maestrini S, Bianchi ML, Morandi L, Moroni I, Mora M (2013) Novel PTRF mutation in a child with mild myopathy and very mild congenital lipodystrophy. BMC Med Genet 14(1):89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariotti N, Parton RG (2013) SnapShot: caveolae, caveolins, and cavins. Cell 154:704. https://doi.org/10.1016/j.cell.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  • Ariotti N, Fernández-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG (2014) Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J Cell Biol 204:777–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariotti N, Rae J, Leneva N, Ferguson C, Loo D, Okano S, Hill MM, Walser P, Collins BM, Parton RG (2015) Molecular characterization of caveolin-induced membrane curvature. J Biol Chem 290:24875–24890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18(7):347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae GD, Park EY, Kim K, Jang SE, Jun HS, Oh YS (2019) Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci Rep 9(1):1–10

    Google Scholar 

  • Bai X, Jia X, Lu Y, Zhu L, Zhao Y, Cheng W, Shu M, Jin S (2020) Salidroside-mediated autophagic targeting of active Src and caveolin-1 suppresses low-density lipoprotein transcytosis across endothelial cells. Oxid Med Cell Longev. https://doi.org/10.1155/2020/9595036

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ (2011) A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 21(4):681–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R, Fernandez-Rojo M, Breen MR, Gygi SP, Vinten J, Walser PJ, North KN, Hancock JF, Pilch PF, Parton RG (2009) MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185:1259–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazzani L, Donnini S, Giachetti A, Christofori G, Ziche M (2018) PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells. Oncotarget 9:14939–14958

    PubMed  PubMed Central  Google Scholar 

  • Benlimame N, Le PU, Nabi IR (1998) Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol Biol Cell 9(7):1773–1786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatcher PN, Bauer PM, Yu J, Prendergast JS, He P, Sessa WC (2005) Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc Natl Acad Sci USA 102:761–766

    Google Scholar 

  • Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC (2011) A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Investig 121:3747–3755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bersuker K, Peterson CWH, To M, Sahl SJ, Savikhin V, Grossman EA, Nomura DK, Olzmann JA (2018) A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 44(1):97–112

    CAS  PubMed  Google Scholar 

  • Blouin CM, Le Lay S, Lasnier F, Dugail I, Hajduch E (2008) Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun 376(2):331–335

    CAS  PubMed  Google Scholar 

  • Boettcher JP, Kirchner M, Churin Y, Kaushansky A, Pompaiah M, Thorn H, Brinkmann V, MacBeath G, Meyer TF (2010) Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements. PLoS Biol 8:55–56

    Google Scholar 

  • Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonuccelli G, Casimiro MC, Sotgia F, Wang C, Liu M, Katiyar S, Zhou J, Dew E, Capozza F, Daumer KM, Minetti C, Milliman JN, Alpy F, Rio MC, Tomasetto C, Mercier I, Flomenberg N, Frank PG, Pestell RG, Lisanti MP (2009) Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. Am J Pathol 174(5):1650–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch M, Marí M, Herms A, Fernández A, Fajardo A, Kassan A, Giralt A, Colell A, Balgoma D, Barbero E, González-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gross SP, García-Ruiz C, Pérez-Navarro E, Fernández-Checa JC et al (2011) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 21:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boscher C, Nabi IR (2013) Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 24:2134–2145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucrot E, Howes MT, Kirchhausen T, Parton RG (2011) Redistribution of caveolae during mitosis. J Cell Sci 124:1965–1972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, Jo H (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:1113–1122

    Google Scholar 

  • Bravo-Sagua R, Parra V, Ortiz-Sandoval C, Navarro-Marquez M, Rodríguez AE, Diaz-Valdivia N, Sanhueza C, Lopez-Crisosto C, Tahbaz N, Rothermel BA, Hill JA, Cifuentes M, Simmen T, Quest AFG, Lavandero S (2019) Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death Differ 26(7):1195–1212

    CAS  PubMed  Google Scholar 

  • Breen MR, Camps M, Carvalho-Simoes F, Zorzano A, Pilch PF (2012) Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS ONE 7:2–9

    Google Scholar 

  • Burgener R, Wolf M, Ganz T, Baggiolini M (1990) Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem. J. 269:729–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge K, Monaghan-Benson E, Graham DM (2019) Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos Trans R Soc B Biol Sci 374(1779):20180229

    CAS  Google Scholar 

  • Byrne DP, Dart C, Rigden DJ (2012) Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS ONE 7(9):e44879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, Buccione R (2009) Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J Cell Mol Med 13(8b):1728–1740

    PubMed  Google Scholar 

  • Calizo RC, Scarlata S (2012) A role for G-proteins in directing G-protein-coupled receptor-caveolae localization. Biochemistry 51(47):9513–9523

    CAS  PubMed  Google Scholar 

  • Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14. Recruitment of C-terminal Src kinase. J Biol Chem 277:8771–8774

    CAS  PubMed  Google Scholar 

  • Cao H, Alston L, Ruschman J, Hegele RA (2008) Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis 7(1):3

    PubMed  PubMed Central  Google Scholar 

  • Capozza F, Williams TM, Schubert W, McClain S, Bouzahzah B, Sotgia F, Lisanti MP (2003) Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am J Pathol 162(6):2029–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caselli A, Mazzinghi B, Camici G, Manao G, Ramponi G (2002) Some protein tyrosine phosphatases target in part to lipid rafts and interact with caveolin-1. Biochem Biophys Res Commun 296:692–697

    CAS  PubMed  Google Scholar 

  • Caselli A, Taddei ML, Bini C, Paoli P, Camici G, Manao G, Cirri P, Ramponi G (2007) Low molecular weight protein tyrosine phosphatase and caveolin-1: interaction and isoenzyme-dependent regulation. Biochemistry 46(21):6383–6392

    CAS  PubMed  Google Scholar 

  • Chanthick C, Kanlaya R, Kiatbumrung R, Pattanakitsakul SN, Thongboonkerd V (2016) Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: a model of vascular leakage in dengue hemorrhagic fever. Sci Rep 6:31855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee M, Ben-Josef E, Thomas DG, Morgan MA, Zalupski MM, Khan G, Andrew Robinson C, Griffith KA, Chen CS, Ludwig T, Bekaii-Saab T, Chakravarti A, Williams TM (2015) Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep 5:10867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary N, Gomez GA, Howes MT, Lo HP, McMahon KA, Rae JA, Schieber NL, Hill MM, Gaus K, Yap AS, Parton RG (2014) Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 12(4):e1001832

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, Bakhshi FR, Shajahan AN, Sharma T, Mao Trane A, Bernatchez P, Van Nieuw Amerongen GP, Bonini MG, Skidgel RA, Malik AB, Minshall RD (2012) Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell 23:1388–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SF, Wu CH, Lee YM, Tam K, Tsai YC, Liou JY, Shyue SK (2013) Caveolin-1 interacts with derlin-1 and promotes ubiquitination and degradation of cyclooxygenase-2 via collaboration with p97 complex. J Biol Chem 288(46):33462–33469

    CAS  PubMed  Google Scholar 

  • Cheng ZJ, Singh RD, Holicky EL, Wheatley CL, Marks DL, Pagano RE (2010) Co-regulation of caveolar and Cdc42-dependent fluid phase endocytosis by phosphocaveolin-1. J Biol Chem 285:15119–15125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JPX, Mendoza-Topaz C, Howard G, Chadwick J, Shvets E, Cowburn AS, Dunmore BJ, Crosby A, Morrell NW, Nichols BJ (2015) Caveolae protect endothelial cells from membrane rupture during increased cardiac output. J Cell Biol 211:53–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung C, Li S, Chen D, Brace R (2010) Regulation of caveolin-1 expression and phosphorylation by VEGF in ovine amnion cells. Reprod Sci 17:1112–1119

    CAS  PubMed  Google Scholar 

  • Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    CAS  PubMed  Google Scholar 

  • Collins BM, Davis MJ, Hancock JF, Parton RG (2012) Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 23:11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Copeland CA, Han B, Tiwari A, Austin ED, Loyd JE, West JD, Kenworthy AK (2017) A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal. Mol Biol Cell 28(22):3095–3111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart P, Helenius A (2014) Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol 6(8):a016972

    PubMed  PubMed Central  Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. J Biol Chem 272(10):6525–6533

  • Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7(1):1–13

    Google Scholar 

  • D’Addario M, Arora PD, Fan J, Ganss B, Ellen RP, McCulloch CAG (2001) Cytoprotection against mechanical forces delivered through β 1 integrins requires induction of filamin A. J Biol Chem 276(34):31969–31977

    PubMed  Google Scholar 

  • D’Addario M, Arora PD, Ellen RP, McCulloch CAG (2002) Interaction of p38 and Sp1 in a mechanical force-induced, β1 integrin-mediated transcriptional circuit that regulates the actin-binding protein filamin-A. J Biol Chem 277(49):47541–47550

    PubMed  Google Scholar 

  • da Silva SD, Xu B, Maschietto M, Marchi FA, Alkailani MI, Bijian K, Xiao D, Alaoui-Jamali MA (2019) TRAF2 cooperates with focal adhesion signaling to regulate cancer cell susceptibility to anoikis. Mol Cancer Ther 18:139–146

    PubMed  Google Scholar 

  • Dai J, Sheetz MP (1995) Regulation of endocytosis, exocytosis, and shape by membrane tension. In: Cold spring harbor symposia on quantitative biology

  • Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18(17):6681–6692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588(17):3169–3178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta I, McCollum D (2019) Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem 294(46):17693–17706

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A, Anderson RGW, Schwartz MA (2005) Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7:901–908

    PubMed  PubMed Central  Google Scholar 

  • Díaz-Valdivia NI, Díaz J, Contreras P, Campos A, Rojas-Celis V, Burgos-Ravanal RA, Lobos-González L, Torres VA, Perez VI, Frei B, Leyton L, Quest AFG (2020) The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene 39:3693–3709. https://doi.org/10.1038/s41388-020-1242-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, Kranz C, Frick M (2020) Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J 34(9):12785–12804

    CAS  PubMed  Google Scholar 

  • Ding S-Y, Liu L, Pilch PF (2017) Muscular dystrophy in PTFR/cavin-1 null mice. JCI Insight. https://doi.org/10.1172/jci.insight.91023

    Article  PubMed  PubMed Central  Google Scholar 

  • Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD (2016) Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLoS Biol 14(6):e1002474

    PubMed  PubMed Central  Google Scholar 

  • Domingues L, Hurbain I, Gilles-Marsens F, Sirés-Campos J, André N, Dewulf M, Romao M, Viaris de Lesegno C, Macé AS, Blouin C, Guéré C, Vié K, Raposo G, Lamaze C, Delevoye C (2020) Coupling of melanocyte signaling and mechanics by caveolae is required for human skin pigmentation. Nat Commun. https://doi.org/10.1038/s41467-020-16738-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Hailer H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    CAS  PubMed  Google Scholar 

  • Du J, Chen X, Liang X, Zhang G, Xu J, He L, Zhan Q, Feng XQ, Chien S, Yang C (2011) Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci USA 108:9466–9471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dulhunty AF, Franzini-Armstrong C (1975) The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol 250(3):513–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343:42–53. https://doi.org/10.1016/j.yexcr.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

    CAS  PubMed  Google Scholar 

  • Echarri A, Del Pozo MA (2006) Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle 5:2179–2182

    CAS  PubMed  Google Scholar 

  • Echarri A, Muriel O, Pavón DM, Azegrouz H, Escolar F, Terrón MC, Sanchez-Cabo F, Martínez F, Montoya MC, Llorca O, del Pozo MA (2012) Erratum to Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1 [J. Cell Sci. 125, 3097-3113]. J Cell Sci 125:4413

    CAS  Google Scholar 

  • Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA (2019) An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 10:1. https://doi.org/10.1038/s41467-019-13782-2

    Article  CAS  Google Scholar 

  • Egorov YV, Lang D, Tyan L, Turner D, Lim E, Piro ZD, Hernandez JJ, Lodin R, Wang R, Schmuck EG, Raval AN, Ralphe CJ, Kamp TJ, Rosenshtraukh LV, Glukhov AV (2019) Caveolae-mediated activation of mechanosensitive chloride channels in pulmonary veins triggers atrial arrhythmogenesis. J Am Heart Assoc 8:e012748

    PubMed  PubMed Central  Google Scholar 

  • Epand RM, Sayer BG, Epand RF (2005) Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol 345(2):339–350

    CAS  PubMed  Google Scholar 

  • Escriche M, Burgueño J, Ciruela F, Canela EI, Mallol J, Enrich C, Lluís C, Franco R (2003) Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Exp Cell Res 285(1):72–90

    CAS  PubMed  Google Scholar 

  • Ewers H, Römer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12:11–18

    CAS  PubMed  Google Scholar 

  • Fagerholm S, Örtegren U, Karlsson M, Ruishalme I, Strålfors P (2009) Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS ONE 4(6):e5985

    PubMed  PubMed Central  Google Scholar 

  • Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L, Webb RI, Grinstein S, Parton RG (2011) High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J Cell Biol 194:257–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Lou Gaeta M, Madge LA, Yang JH, Bradley JR, Pober JS (2001) Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem 276(11):8341–8349

    CAS  PubMed  Google Scholar 

  • Ferrari MB, Podugu S, Eskew JD (2006) Assembling the myofibril: coordinating contractile cable construction with calcium. Cell Biochem Biophys 45(3):317

    CAS  PubMed  Google Scholar 

  • Fielding CJ, Fielding PE (2001) Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev 49:251–264

    CAS  PubMed  Google Scholar 

  • Fielding PE, Chau P, Liu D, Spencer TA, Fielding CJ (2004) Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry 43(9):2578–2586

    CAS  PubMed  Google Scholar 

  • Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335(1):41–47

    CAS  PubMed  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    CAS  PubMed  Google Scholar 

  • Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls α5β 1 function. Science 323(5914):642–644

    CAS  PubMed  Google Scholar 

  • Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J Cell Biol 152(5):1079–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci USA 106:9256–9261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabella G, Blundell D (1978) Effect of stretch and contraction on caveolae of smooth muscle cells. Cell Tissue Res 190(2):255–271

    CAS  PubMed  Google Scholar 

  • Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H, Kneitz B, Edelmann W, Lisanti MP (2001a) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. J Biol Chem 276:21425–21433

    CAS  PubMed  Google Scholar 

  • Galbiati F, Razani B, Lisanti MP (2001b) Emerging themes in lipid rafts and caveolae. Cell 106(4):403–411

    CAS  PubMed  Google Scholar 

  • Gambin Y, Ariotti N, McMahon K-A, Bastiani M, Sierecki E, Kovtun O, Polinkovsky ME, Magenau A, Jung W, Okano S, Zhou Y, Leneva N, Mureev S, Johnston W, Gaus K, Hancock JF, Collins BM, Alexandrov K, Parton RG (2014) Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. Elife 3:1–18

    Google Scholar 

  • García-Cardeña G, Fan R, Stern DF, Liu J, Sessa WC (1996) Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271(44):27237–27240

    PubMed  Google Scholar 

  • Garg A, Kircher M, del Campo M, Amato RS, Agarwal AK (2015) Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am J Med Genet Part A 167(8):1796–1806

    CAS  Google Scholar 

  • Garver WS, Hossain GS, Winscott MM, Heidenreich RA (1999) The Npc1 mutation causes an altered expression of caveolin-1, annexin II and protein kinases and phosphorylation of caveolin-1 and annexin II in murine livers. Biochim Biophys Acta Mol Basis Dis 1453(2):193–206

    CAS  Google Scholar 

  • Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci USA 108:14467–14472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:527–535. https://doi.org/10.1016/j.tcb.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  • Gazzerro E, Sotgia F, Bruno C, Lisanti MP, Minetti C (2010) Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 18:137–145

    CAS  PubMed  Google Scholar 

  • Gehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA, Riching KM, Eliceiri KW, Weaver VM, Calderwood DA, Keely PJ (2009) Filamin A-β1 integrin complex tunes epithelial cell response to matrix tension. Mol Biol Cell 20(14):3224–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gervásio OL, Whitehead NR, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase—role in Duchenne muscular dystrophy. J Cell Sci 121(13):2246–2255

    PubMed  Google Scholar 

  • Gervásio OL, Phillips WD, Cole L, Allen DG (2011) Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci 124(21):3581–3590

    PubMed  Google Scholar 

  • Gilbert G, Ducret T, Savineau JP, Marthan R, Quignard JF (2016) Caveolae are involved in mechanotransduction during pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 310:L1078–L1087

    PubMed  Google Scholar 

  • Girao H, Geli MI, Idrissi FZ (2008) Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 582:2112–2119

    CAS  PubMed  Google Scholar 

  • Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180:1261–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz JG, Minguet S, Navarro-Lérida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibáñez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJP, Garcia R, Keely PJ, Sánchez-Mateos P, Cukierman E, Del Pozo MA (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golani G, Ariotti N, Parton RG, Kozlov MM (2019) Membrane curvature and tension control the formation and collapse of caveolar superstructures. Dev Cell 48:523–538. https://doi.org/10.1016/j.devcel.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  • Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T (2013) Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288:8168–8175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Görtzen J, Schierwagen R, Bierwolf J, Klein S, Uschner FE, van der Ven PF, Fürst DO, Strassburg CP, Laleman W, Pollok JM, Trebicka J (2015) Interplay of matrix stiffness and c-SRC in hepatic fibrosis. Front Physiol 6:359

    PubMed  PubMed Central  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honoré E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch Eur J Physiol 455(6):1097–1103

    CAS  Google Scholar 

  • Gottlieb-Abraham E, Shvartsman DE, Donaldson JC, Ehrlich M, Gutman O, Martin GS, Henis YI (2013) Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24(24):3881–3895

    PubMed  PubMed Central  Google Scholar 

  • Grande-García A, Echarri A, De Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, Del Pozo MA (2007) Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 177:683–694

    PubMed  PubMed Central  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson K-E, Strålfors P (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13(14):1961–1971

  • Gustincich S, Vatta P, Goruppi S, Wolf M, Saccone S, Della Valle G, Baggiolini M, Schneider C (1999) The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57:120–129

    CAS  PubMed  Google Scholar 

  • Han SE, Park KH, Lee G, Huh YJ, Min BM (2004) Mutation and aberrant expression of Caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. Int J Oncol 24(2):435–440

    CAS  PubMed  Google Scholar 

  • Han B, Tiwari A, Kenworthy AK (2015) Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 16(4):417–438

    CAS  PubMed  Google Scholar 

  • Han B, Copeland CA, Kawano Y, Rosenzweig EB, Austin ED, Shahmirzadi L, Tang S, Raghunathan K, Chung WK, Kenworthy AK (2016) Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy. Traffic 17(12):1297–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handorf AM, Zhou Y, Halanski MA, Li WJ (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11(1):1–15

    PubMed  PubMed Central  Google Scholar 

  • Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:177–186

    CAS  PubMed  Google Scholar 

  • Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11:807–814. https://doi.org/10.1038/ncb1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen CG, Howard G, Nichols BJ (2011) Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 124:2777–2785

    CAS  PubMed  Google Scholar 

  • Hansen CG, Shvets E, Howard G, Riento K, Nichols BJ (2013) Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 4:1–13

    Google Scholar 

  • Hanson CA, Drake KR, Baird MA, Han B, Kraft LJ, Davidson MW, Kenworthy AK (2013) Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant. Traffic 14(6):663–677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hau AM, Gupta S, Leivo MZ, Nakashima K, Macias J, Zhou W, Hodge A, Wulfkuhle J, Conkright B, Bhuvaneshwar K, Rao S, Madhavan S, Petricoin EF, Hansel DE (2019) Dynamic regulation of caveolin-1 phosphorylation and caveolae formation by mammalian target of rapamycin complex 2 in bladder cancer cells. Am J Pathol 189:1846–1862. https://doi.org/10.1016/j.ajpath.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121(4):496–503

    CAS  PubMed  Google Scholar 

  • Hayashi K, Matsuda S, Machida K, Yamamoto T, Fukuda Y, Nimura Y, Hayakawa T, Hamaguchi M (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61(6):2361–2364

    CAS  PubMed  Google Scholar 

  • Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I (2009) Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Investig 119(9):2623–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayer A, Stoeber M, Bissig C, Helenius A (2010a) Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11:361–382

    CAS  PubMed  Google Scholar 

  • Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A (2010b) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191(3):615–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Head BP, Patel HH, Roth DM, Murray F, Swaney JS, Niesman IR, Farquhar MG, Insel PA (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399

    CAS  PubMed  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701

    CAS  PubMed  Google Scholar 

  • Heer NC, Martin AC (2017) Tension, contraction and tissue morphogenesis. Development 144:4249–4260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henley JR, Krueger EWA, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141(1):85–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RGW, Michaely P (2013) Cavin-3 dictates the balance between ERK and Akt signaling. Elife 2013:1–26

    Google Scholar 

  • Hertzog M, Monteiro P, Le Dez G, Chavrier P (2012) Exo70 subunit of the exocyst complex is involved in adhesion-dependent trafficking of caveolin-1. PLoS ONE 7:1–9

    Google Scholar 

  • Hetmanski JHR, de Belly H, Busnelli I, Waring T, Nair RV, Sokleva V, Dobre O, Cameron A, Gauthier N, Lamaze C, Swift J, del Campo A, Starborg T, Zech T, Goetz JG, Paluch EK, Schwartz JM, Caswell PT (2019) Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev Cell 51:460–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MM, Scherbakov N, Schiefermeier N, Baran JA, Hancock JF, Huber LA, Parton RG, Parat MO (2007) Reassessing the role of phosphocaveolin-1 in cell adhesion and migration. Traffic 8:1695–1705

    CAS  PubMed  Google Scholar 

  • Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VMJ, Martin S, Hancock JF, Parton RG (2008) PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirama T, Das R, Yang Y, Ferguson C, Won A, Yip CM, Kay JG, Grinstein S, Parton RG, Fairn GD (2017) Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. J Biol Chem 292:14292–14307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoon J, Tan M, Koh C-G (2016) The regulation of cellular responses to mechanical cues by Rho GTPases. Cells 5:17

    PubMed Central  Google Scholar 

  • Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171(2):177–189

    CAS  PubMed  Google Scholar 

  • Hubert M, Larsson E, Lundmark R (2020a) Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochem Soc Trans 48:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert M, Larsson E, Vegesna NVG, Ahnlund M, Johansson AI, Moodie LW, Lundmark R (2020b) Lipid accumulation controls the balance between surface connection and scission of caveolae. Elife 9:1–31

    Google Scholar 

  • Huelsmann S, Rintanen N, Sethi R, Brown NH, Ylänne J (2016) Evidence for the mechanosensor function of filamin in tissue development. Sci Rep 6:32798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huveneers S, Danen EHJ (2009) Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122:1059–1069

    CAS  PubMed  Google Scholar 

  • Inder KL, Zheng YZ, Davis MJ, Moon H, Loo D, Nguyen H, Clements JA, Parton RG, Foster LJ, Hill MM (2012) Expression of PTRF in PC-3 cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways. Mol Cell Proteom 11:1–13

    Google Scholar 

  • Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M (2010) Actin cytoskeleton regulates stretch-activated Ca2 + influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43(1):26–34

    CAS  PubMed  Google Scholar 

  • Izumi Y, Hirai SI, Tamai Y, Fujise-Matsuoka A, Nishimura Y, Ohno S (1997) A protein kinase Cδ-binding protein SRBC whose expression is induced by serum starvation. J Biol Chem 272:7381–7389

    CAS  PubMed  Google Scholar 

  • Jackson WM, Jaasma MJ, Tang RY, Keaveny TM (2008) Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol 43(1):26–34

    Google Scholar 

  • Janmey PA, Fletcher DA, Reinhart-King CA (2020) Stiffness sensing by cells. Physiol Rev 100(2):695–724

    PubMed  Google Scholar 

  • Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I (1998) Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 17:2855–2864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelani M, Ahmed S, Almramhi MM, Mohamoud HSA, Bakur K, Anshasi W, Wang J, Al-Aama JY (2015) Novel nonsense mutation in the PTRF gene underlies congenital generalized lipodystrophy in a consanguineous Saudi family. Eur J Med Genet 58(4):216–221

    PubMed  Google Scholar 

  • Jiang Y, Toth P, Oliveira S, Liu Y, Hart P, Rehman J, Bonini M, Minshall RD (2016) Caveolin-1 regulates mitochondrial dynamics by suppressing Mfn-2 and Drp-1 recruitment. FASEB J 30:1100–1117

    Google Scholar 

  • Jiao H, Zhang Y, Yan Z, Wang Z-G, Liu G, Minshall RD, Malik AB, Hu G (2013) Caveolin-1 Tyr 14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol 191(12):6191–6199

    CAS  PubMed  Google Scholar 

  • Jo A, Park H, Lee SH, Ahn SH, Kim HJ, Park EM, Choi YH (2014) SHP-2 binds to caveolin-1 and regulates Src activity via competitive inhibition of CSK in response to H2O2 in astrocytes. PLoS ONE 9:e91582

    PubMed  PubMed Central  Google Scholar 

  • Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, Leung S, Wiseman SM, Nabi IR (2008) Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68:8210–8220

    CAS  PubMed  Google Scholar 

  • Joshi B, Bastiani M, Strugnell SS, Boscher C, Parton RG, Nabi IR (2012) Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol 199:425–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi B, Pawling J, Shankar J, Pacholczyk K, Kim Y, Tran W, Meng F, Abdel Rahman AM, Foster LJ, Leong HS, Dennis JW, Nabi IR (2019) Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget 10:6668–6677

    PubMed  PubMed Central  Google Scholar 

  • Jung WR, Sierecki E, Bastiani M, O’Carroll A, Alexandrov K, Rae J, Johnston W, Hunter DJB, Ferguson C, Gambin Y, Ariotti N, Parton RG (2018) Cell-free formation and interactome analysis of caveolae. J Cell Biol 217:2141–2165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalappurakkal JM, Sil P, Mayor S (2020) Toward a new picture of the living plasma membrane. Protein Sci 29:1355–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson M, Thorn H, Parpal S, Strålfors P, Gustavsson J (2001) Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J 16(2):1–12

  • Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44):15895–15900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae. Cytoskeletal regulation of ERK translocation. J Biol Chem 278:31111–31117

    CAS  PubMed  Google Scholar 

  • Keely PJ (2011) Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 16(3):205

    PubMed  Google Scholar 

  • Khan EM, Heidinger JM, Levy M, Lisanti MP, Ravid T, Goldkorn T (2006) Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493

    CAS  PubMed  Google Scholar 

  • Kim Y-N, Wiepz GJ, Guadarrama AG, Bertics PJ (2000) Epidermal Growth Factor-stimulated Tyrosine Phosphorylation of Caveolin-1. J Biol Chem 275:7481–7491

    CAS  PubMed  Google Scholar 

  • Kim CA, Delépine M, Boutet E, El Mourabit H, Le Lay S, Meier M, Nemani M, Bridel E, Leite CC, Bertola DR, Semple RK, O’Rahilly S, Dugail I, Capeau J, Lathrop M, Magré J (2008) Association of a homozygous nonsense caveolin-1 mutation with berardinelli-seip congenital lipodystrophy. J Clin Endocrinol Metab 93(4):1129–1134

    CAS  PubMed  Google Scholar 

  • Kirkham M, Nixon SJ, Howes MT, Abi-Rached L, Wakeham DE, Hanzal-Bayer M, Ferguson C, Hill MM, Fernandez-Rojo M, Brown DA, Hancock JF, Brodsky FM, Parton RG (2008) Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci 121:2075–2086

    CAS  PubMed  Google Scholar 

  • Kosmalska AJ, Casares L, Elosegui-Artola A, Thottacherry JJ, Moreno-Vicente R, González-Tarragó V, Del Pozo MÁ, Mayor S, Arroyo M, Navajas D, Trepat X, Gauthier NC, Roca-Cusachs P (2015) Physical principles of membrane remodelling during cell mechanoadaptation. Nat Commun 6(1):1–11

    Google Scholar 

  • Kostan J, Salzer U, Orlova A, Törö I, Hodnik V, Senju Y, Zou J, Schreiner C, Steiner J, Meriläinen J, Nikki M, Virtanen I, Carugo O, Rappsilber J, Lappalainen P, Lehto V, Anderluh G, Egelman EH, Djinović-Carugo K (2014) Direct interaction of actin filaments with F - BAR protein pacsin2. EMBO Rep 15:1154–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun O, Tillu VA, Jung WR, Leneva N, Ariotti N, Chaudhary N, Mandyam RA, Ferguson C, Morgan GP, Johnston WA, Harrop SJ, Alexandrov K, Parton RG, Collins BM (2014) Structural insights into the organization of the cavin membrane coat complex. Dev Cell 31:405–419. https://doi.org/10.1016/j.devcel.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  • Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM (2015) Cavin family proteins and the assembly of caveolae. J Cell Sci 128:1269–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozera L, White E, Calaghan S (2009) Caveolae act as membrane reserves which limit mechanosensitive ICl, swell channel activation during swelling in the rat ventricular myocyte. PLoS ONE 4(12):e8312

    PubMed  PubMed Central  Google Scholar 

  • Krawczyk KK, Mattisson IY, Ekman M, Oskolkov N, Grantinge R, Kotowska D, Olde B, Hansson O, Albinsson S, Miano JM, Rippe C, Swärd K (2015) Myocardin family members drive formation of caveolae. PLoS ONE 10:1–25

    Google Scholar 

  • Krishna A, Sengupta D (2019) Interplay between membrane curvature and cholesterol: role of palmitoylated caveolin-1. Biophys J 116:69–78. https://doi.org/10.1016/j.bpj.2018.11.3127

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Lee MY, Yang K, Gross RW, Sessa WC (2018) Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin–stimulated, cAMP-mediated lipolysis. J Biol Chem 293(3):973–983

    CAS  PubMed  Google Scholar 

  • Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Béliveau R (2004) Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279:52132–52140

    CAS  PubMed  Google Scholar 

  • Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE (2018) FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 32(2):1099–1107

    CAS  PubMed  Google Scholar 

  • Lamar JM, Xiao Y, Norton E, Jiang ZG, Gerhard GM, Kooner S, Warren JSA, Hynes RO (2019) SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. J Biol Chem 294(7):2302–2317

    CAS  PubMed  Google Scholar 

  • Lamaze C, Tardif N, Dewulf M, Vassilopoulos S, Blouin CM (2017) The caveolae dress code: structure and signaling. Curr Opin Cell Biol 47:117–125

    CAS  PubMed  Google Scholar 

  • Lampi MC, Reinhart-King CA (2018) Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med 10(422):eaao0475

    PubMed  Google Scholar 

  • Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P (2019) The plasma membrane as a mechanochemical transducer. Philos Trans R Soc B Biol, Sci, p 374

    Google Scholar 

  • Lee J, Glover KJ (2012) The transmembrane domain of caveolin-1 exhibits a helix-break-helix structure. Biochim Biophys Acta Biomembr 1818:1158–1164. https://doi.org/10.1016/j.bbamem.2011.12.033

    Article  CAS  Google Scholar 

  • Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775

    CAS  PubMed  Google Scholar 

  • Lee H, Park DS, Wang XB, Scherer PE, Schwartz PE, Lisanti MP (2002) Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J Biol Chem 277(37):34556–34567

    CAS  PubMed  Google Scholar 

  • Lee CY, Lai TY, Tsai MK, Chang YC, Ho YH, Yu IS, Yeh TW, Chou CC, Lin YS, Lawrence T, Hsu LC (2017) The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms15502

    Article  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906. https://doi.org/10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by Src tyrosine kinases: the α-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271(7):3863–3868

    CAS  PubMed  Google Scholar 

  • Li WP, Liu P, Pilcher BK, Anderson RG (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114(7):1397–1408

    CAS  PubMed  Google Scholar 

  • Li T, Sotgia F, Vuolo MA, Li M, Yang WC, Pestell RG, Sparano JA, Lisanti MP (2006) Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor α-positive status. Am J Pathol 168(6):1998–2013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Bai L, Liu N, Wang M, Liu JP, Liu P, Cong YS (2014) Increased polymerase I and transcript release factor (Cavin-1) expression attenuates platelet-derived growth factor receptor signalling in senescent human fibroblasts. Clin Exp Pharmacol Physiol 41:169–173

    PubMed  Google Scholar 

  • Lim YW, Lo HP, Ferguson C, Martel N, Giacomotto J, Gomez GA, Yap AS, Hall TE, Parton RG (2017) Caveolae protect notochord cells against catastrophic mechanical failure during development. Curr Biol 27:1968–1981. https://doi.org/10.1016/j.cub.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Zhou J, Zelenka PS, Takemoto DJ (2003) Protein kinase Cγ regulation of gap junction activity through caveolin-1–containing lipid rafts. Invest Ophth Vis Sci 44(12):5259

  • Lin F, Pei L, Zhang Q, Han W, Jiang S, Lin Y, Dong B, Cui L, Li M (2018) Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J Cell Physiol 233(10):6683–6692

    CAS  PubMed  Google Scholar 

  • Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322

    CAS  PubMed  Google Scholar 

  • Liu L, Pilch PF (2016) PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. Elife 5:1–20

    Google Scholar 

  • Liu L, Brown D, McKee M, LeBrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8(4):310–317

    PubMed  PubMed Central  Google Scholar 

  • Liu L, Hansen CG, Honeyman BJ, Nichols BJ, Pilch PF (2014) Cavin-3 knockout mice show that cavin-3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS ONE 9(7):e102935

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Yang L, Zhang Q, Mao L, Jiang H, Yang H (2016) Probing the structure and dynamics of caveolin-1 in a caveolae-mimicking asymmetric lipid bilayer model. Eur Biophys J 45:511–521

    CAS  PubMed  Google Scholar 

  • Lo HP, Hall TE, Parton RG (2016) Mechanoprotection by skeletal muscle caveolae. Bioarchitecture 6:22–27

    PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Howard G, Mendoza-Topaz C, Deerinck T, Mackey M, Sandin S, Ellisman MH, Nichols BJ (2013) Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol 11(8):e1001640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Nichols BJ, Sandin S (2016) Architecture of the caveolar coat complex. J Cell Sci 129:3077–3083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen KL, Bhatia VK, Gether U, Stamou D (2010) BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett 584(9):1848–1855

    CAS  PubMed  Google Scholar 

  • Mahavadi S, Bhattacharya S, Kim J, Fayed S, Al-Shboul O, Grider JR, Murthy KS (2013) Caveolae-dependent internalization and homologous desensitization of VIP/PACAP receptor, VPAC2, in gastrointestinal smooth muscle. Peptides 43:137–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marjoram RJ, Lessey EC, Burridge K (2014) Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 14(2):199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185

    CAS  PubMed  Google Scholar 

  • Martínez-Meza S, Díaz J, Sandoval-Bórquez A, Valenzuela-Valderrama M, Rojas-Celis ND-VV, Contreras P, Huilcaman R, Ocaranza MP, Chiong M, Leyton L, Lavandero S, Quest AFG (2019) AT2 receptor mediated activation of the tyrosine phosphatase PTP1B blocks caveolin-1 enhanced migration, invasion and metastasis of cancer cells. Cancers 11(9):1299

    PubMed Central  Google Scholar 

  • Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    PubMed  PubMed Central  Google Scholar 

  • Mastick CC, Saltiel AR (1997) Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 272:20706–20714

    CAS  PubMed  Google Scholar 

  • Mastick CC, Brady MJ, Saltiel AR (1995) Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129:1523–1531

    CAS  PubMed  Google Scholar 

  • Mastick CC, Sanguinetti AR, Knesek JH, Mastick GS, Newcomb LF (2001) Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res 266(1):142–154

    CAS  PubMed  Google Scholar 

  • Matthaeus C, Lahmann I, Kunz S, Jonas W, Melo AA, Lehmann M, Larsson E, Lundmark R, Kern M, Blüher M, Olschowski H, Kompa J, Brügger B, Müller DN, Haucke V, Schürmann A, Birchmeier C, Daumke O (2020) EHD2-mediated restriction of caveolar dynamics regulates cellular fatty acid uptake. Proc Natl Acad Sci USA 117:7471–7481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayor S, Parton RG, Donaldson JG (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6(6):a016758

    PubMed  PubMed Central  Google Scholar 

  • McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RGW (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28:1001–1015. https://doi.org/10.1038/emboj.2009.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon KA, Wu Y, Gambin Y, Sierecki E, Tillu VA, Hall T, Martel N, Okano S, Moradi SV, Ruelcke JE, Ferguson C, Yap AS, Alexandrov K, Hill MM, Parton RG (2019) Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nat Commun. https://doi.org/10.1038/s41467-019-11111-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng F, Saxena S, Liu Y, Joshi B, Wong TH, Shankar J, Foster LJ, Bernatchez P, Nabi IR (2017) The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Mol Biol Cell 28:2190–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier I, Bryant KG, Sotgia F, Bonuccelli G, Witkiewicz AK, Dasgupta A, Jasmin JF, Pestell RG, Lisanti MP (2009) Using caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and predict the caveolin-1 (P132L) mutation. Cell Cycle 8(9):1396–1401

    CAS  PubMed  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca 2 + —calmodulin and caveolin. J Biol Chem 272:15583–15586

    CAS  PubMed  Google Scholar 

  • Mineo C, Ying YS, Chapline C, Jaken S, Anderson RGW (1998) Targeting of protein kinase Cα to caveolae. J Cell Biol 141:601–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minetti C, Sotgia F, Bruno C, Scartezzini P, Paolo Broda MB, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonté D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368

    CAS  PubMed  Google Scholar 

  • Minguet S, Kläsener K, Schaffer AM, Fiala GJ, Osteso-Ibánez T, Raute K, Navarro-Lérida I, Hartl FA, Seidl M, Reth M, Del Pozo MA (2017) Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol 18:1150–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176:107–144

    Google Scholar 

  • Minshall RD, Sessa WC, Stan RV, Anderson RGW, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285(6):L1179–L1183

    CAS  PubMed  Google Scholar 

  • Mohan J, Morén B, Larsson E, Holst MR, Lundmark R (2015) Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J Cell Sci 128:979–991

    CAS  PubMed  Google Scholar 

  • Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monteleone MC, González Wusener AE, Burdisso JE, Conde C, Cáceres A, Arregui CO (2012) ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS ONE 7(6):e38948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon H, Lee CS, Inder KL, Sharma S, Choi E, Black DM, Lê Cao KA, Winterford C, Coward JI, Ling MT, Craik DJ, Parton RG, Russell PJ, Hill MM (2014) PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 33:3561–3570

    CAS  PubMed  Google Scholar 

  • Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan E (1999) Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem 274:25708–25717

    CAS  PubMed  Google Scholar 

  • Morén B, Shah C, Howes MT, Schieber NL, McMahon HT, Parton RG, Daumke O, Lundmark R (2012) EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell 23:1316–1329

    PubMed  PubMed Central  Google Scholar 

  • Morén B, Hansson B, Negoita F, Fryklund C, Lundmark R, Göransson O, Stenkula KG (2019) EHD2 regulates adipocyte function and is enriched at cell surface-associated lipid droplets in primary human adipocytes. Mol Biol Cell 30:1147–1159

    PubMed  PubMed Central  Google Scholar 

  • Moreno-Vicente R, Pavón DM, Martín-Padura I, Català-Montoro M, Díez-Sánchez A, Quílez-Álvarez A, López JA, Sánchez-Álvarez M, Vázquez J, Strippoli R, del Pozo MA (2018) Caveolin-1 modulates mechanotransduction responses to substrate stiffness through actin-dependent control of YAP. Cell Rep 25:1622–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174:851–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179(2):79–102

    CAS  PubMed  Google Scholar 

  • Mundy DI, Machleidt T, Ying YS, Anderson RGW, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339

    CAS  PubMed  Google Scholar 

  • Murata M, Peranen J, Schreinert R, Wielandt F, Kurzchalia TV, Simons KAI (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci 92:10339–10343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muriel O, Echarri A, Hellriegel C, Pavón DM, Beccari L, del Pozo MA (2011) Phosphorylated filamin A regulates actin-linked caveolae dynamics. J Cell Sci 124:2763–2776

    CAS  PubMed  Google Scholar 

  • Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12(7):413–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy KS, Makhlouf GM (2000) Heterologous desensitization mediated by G protein-specific binding to caveolin. J Biol Chem 275(39):30211–30219

    CAS  PubMed  Google Scholar 

  • Nah J, Yoo SM, Jung S, Il Jeong E, Park M, Kaang BK, Jung YK (2017) Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress. Cell Death Dis 8:e2822. https://doi.org/10.1038/cddis.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassoy P, Lamaze C (2012) Stressing caveolae new role in cell mechanics. Trends Cell Biol 22:381–389. https://doi.org/10.1016/j.tcb.2012.04.007

    Article  PubMed  Google Scholar 

  • Nethe M, Hordijk PL (2011) A model for phospho-caveolin-1 driven turnover of focal adhesions. Cell Adhes Migr 5:59–64

    Google Scholar 

  • Ning Y, Buranda T, Hudson LG (2007) Activated epidermal growth factor receptor induces integrin α2 internalization via caveolae/raft-dependent endocytic pathway. J Biol Chem 282(9):6380–6387

    CAS  PubMed  Google Scholar 

  • Northcott JM, Dean IS, Mouw JK, Weaver VM (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev, Biol

    Google Scholar 

  • Nystrom FH, Chen H, Cong LN, Li Y, Quon MJ (1999) Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol 13:2013–2024

    CAS  PubMed  Google Scholar 

  • Oakley FO, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1β (IL-1β)-dependent activation of NFκB by controlling endocytosis of Nox2 and IL-1β receptor 1 from the plasma membrane. J Biol Chem 284(48):33255–33264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh P, Schnitzer JE (2001) Segregation of heterotrimeric G proteins in cell surface microdomains: GQ binds caveolin to concentrate in caveolae, whereas gi and GS target lipid rafts by default. Mol Biol Cell 12(3):685–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi K, Fujiwara S, Mizuno K (2017) Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 161(3):245–254

    CAS  PubMed  Google Scholar 

  • Ono S, Egawa G, Nomura T, Kitoh A, Dainichi T, Otsuka A, Nakajima S, Amagai M, Matsumoto F, Yamamoto M, Kubota Y, Takai T, Honda T, Kabashima K (2019) Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-12232-3

    Article  CAS  Google Scholar 

  • Orlichenko L, Huang B, Krueger E, McNiven MA (2006) Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem 281:4570–4579

    CAS  PubMed  Google Scholar 

  • Orlichenko L, Weller SG, Cao H, Krueger EW, Awoniyi M, Beznoussenko G, Buccione R, McNiven MA (2009) Caveolae mediate growth factor-induced disassembly of adherens junctions to support tumor cell dissociation. Mol Biol Cell 20:4131–4266

    Google Scholar 

  • Örtegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P, Strålfors P (2004) Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur J Biochem 271:2028–2036

    PubMed  Google Scholar 

  • Ortiz R, Díaz J, Díaz N, Lobos-Gonzalez L, Cárdenas A, Contreras P, Díaz MI, Otte E, Cooper-White J, Torres V, Leyton L, Quest AFG (2016) Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget 7:40571–40593

    PubMed  PubMed Central  Google Scholar 

  • Osmani N, Pontabry J, Comelles J, Fekonja N, Goetz JG, Riveline D, Georges-Labouesse E, Labouessea M (2018) An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Mol Biol Cell 29:435–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152(5):1071–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panciera T, Azzolin L, Cordenonsi M, Piccolo S (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18:758–770. https://doi.org/10.1038/nrm.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panciera T, Citron A, Di Biagio D, Battilana G, Gandin A, Giulitti S, Forcato M, Bicciato S, Panzetta V, Fusco S, Azzolin L, Totaro A, Dei Tos AP, Fassan M, Vindigni V, Bassetto F, Rosato A, Brusatin G, Cordenonsi M, Piccolo S (2020) Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat Mater 19:797–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M, Shirani J, Razani B, Tang B, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB, Lisanti MP (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217. https://doi.org/10.1016/S0002-9440(10)61168-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Ryu JM, Han HJ (2011) Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 226:267–275

    CAS  PubMed  Google Scholar 

  • Parolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, Okamoto T, Ikezu T, Scherer PE, Mora R, Rodriguez-Boulan E, Peschle C, Lisanti MP (1999) Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J Biol Chem 274:25718–25725

    CAS  PubMed  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG (2003) Caveolae—from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 4:162–167

    CAS  PubMed  Google Scholar 

  • Parton RG, Collins BM (2016) Unraveling the architecture of caveolae. Proc Natl Acad Sci USA 113:14170–14172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG, Del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112. https://doi.org/10.1038/nrm3512

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, Howes MT (2010) Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 191(3):439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    CAS  PubMed  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    CAS  PubMed  Google Scholar 

  • Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119:787–796

    CAS  PubMed  Google Scholar 

  • Parton RG, Tillu VA, Collins BM (2018) Caveolae. Curr Biol 28:R402–R405

    CAS  PubMed  Google Scholar 

  • Parton RG, Kozlov MM, Ariotti N (2020a) Caveolae and lipid sorting: shaping the cellular response to stress. J Cell Biol 219:1–13

    Google Scholar 

  • Parton RG, McMahon KA, Wu Y (2020b) Caveolae: formation, dynamics, and function. Curr Opin Cell Biol 65:8–16. https://doi.org/10.1016/j.ceb.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  • Parton RG, del Pozo MA, Vassilopoulos S, Nabi IR, Le Lay S, Lundmark R, Kenworthy AK, Camus A, Blouin CM, Sessa WC, Lamaze C (2020c) Caveolae: the FAQs. Traffic 21:181–185

    CAS  PubMed  Google Scholar 

  • Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    CAS  PubMed  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3(5):473–483

    CAS  PubMed  Google Scholar 

  • Pelkmans L, Püntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    CAS  PubMed  Google Scholar 

  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft- mediated endocytosis. Nature 436(7047):78–86

    CAS  PubMed  Google Scholar 

  • Peng F, Wu D, Ingram AJ, Zhang B, Gao B, Krepinsky JC (2007) RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol 18:189–198

    CAS  PubMed  Google Scholar 

  • Pereira PMR, Sharma SK, Carter LM, Edwards KJ, Pourat J, Ragupathi A, Janjigian YY, Durack JC, Lewis JS (2018) Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat Commun. https://doi.org/10.1038/s41467-018-07608-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezeshkian W, Chevrot G, Khandelia H (2018) The role of caveolin-1 in lipid droplets and their biogenesis. Chem Phys Lipids 211:93–99

    CAS  PubMed  Google Scholar 

  • Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pike LJ, Casey L (1996) Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem 271:26453–26456

    CAS  PubMed  Google Scholar 

  • Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152(5):1057–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16:2091–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pol A, Morales-Paytuví F, Bosch M, Parton RG (2020) Non-caveolar caveolins—duties outside the caves. J Cell Sci. https://doi.org/10.1242/jcs.241562

    Article  PubMed  Google Scholar 

  • Portugal CC, Socodato R, Canedo T, Silva CM, Martins T, Coreixas VSM, Loiola EC, Gess B, Röhr D, Santiago AR, Young P, Minshall RD, Paes-De-Carvalho R, Ambrósio AF, Relvas JB (2017) Caveolin-1-mediated internalization of the vitamin C transporter SVCT2 in microglia triggers an inflammatory phenotype. Sci Signal. https://doi.org/10.1126/scisignal.aal2005

    Article  PubMed  Google Scholar 

  • Prescott L, Brightman MW (1976) The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell 8(2):241–258

    CAS  PubMed  Google Scholar 

  • Provenzano PP, Keely PJ (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124(8):1195–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Keely PJ (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28:4326–4343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pu W, Qiu J, Nassar ZD, Shaw PN, McMahon KA, Ferguson C, Parton RG, Riggins GJ, Harris JM, Parat MO (2020) A role for caveola-forming proteins caveolin-1 and CAVIN1 in the pro-invasive response of glioblastoma to osmotic and hydrostatic pressure. J Cell Mol Med 24:3724–3738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puzik K, Tonnier V, Opper I, Eckert A, Zhou L, Kratzer MC, le Noble F, Nienhaus GU, Gradl D (2019) Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation. Sci Rep 9:1–15

    CAS  Google Scholar 

  • Radel C, Rizzo V (2005) Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288:936–945

    Google Scholar 

  • Radel C, Carlile-Klusacek ME, Rizzo V (2007) Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun 358:626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lützkendorf S, Karbasiyan M, Bachmann S, Spuler S, Schuelke M (2010) Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet 6(3):e1000874

    PubMed  PubMed Central  Google Scholar 

  • Ranade SS, Syeda R, Patapoutian A (2015) Mechanically activated ion channels. Neuron 87(6):1162–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch V, Bostrom JR, Park J, Bravo IR, Feng Y, Hay DC, Link BA, Hansen CG (2019) The hippo pathway regulates caveolae expression and mediates flow response via caveolae. Curr Biol 29:242–255. https://doi.org/10.1016/j.cub.2018.11.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macalusol F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    CAS  PubMed  Google Scholar 

  • Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP (2002a) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    CAS  PubMed  Google Scholar 

  • Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H, Christ GJ, Edelmann W, Lisanti MP (2002b) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22:2329–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razinia Z, Mäkelä T, Ylänne J, Calderwood DA (2012) Filamins in mechanosensing and signaling. Annu Rev Biophys. https://doi.org/10.1146/annurev-biophys-050511-102252

    Article  PubMed  PubMed Central  Google Scholar 

  • Repetto S, Salani B, Maggi D, Cordera R (2005) Insulin and IGF-I phosphorylate eNOS in HUVECs by a caveolin-1 dependent mechanism. Biochem Biophy Res Commun 337(3):849–852

  • Richter T, Floetenmeyer M, Ferguson C, Galea J, Goh J, Lindsay MR, Morgan GP, Marsh BJ, Parton RG (2008) High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 9:893–909

    CAS  PubMed  Google Scholar 

  • Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W (2006) Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 1761(4):416–423

    CAS  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rognoni L, Möst T, Žoldák G, Rief M (2014) Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin. Proc Natl Acad Sci USA 111(15):5568–5573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlich P, Allison AC (1976) Oriented pattern of membrane-associated vesicles in fibroblasts. J Ultrastruct Res 103:94–103

    Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    CAS  PubMed  Google Scholar 

  • Rybin VO, Xu X, Steinberg SF (1999) Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ Res 84(9):980–988

    CAS  PubMed  Google Scholar 

  • Sala-Vila A, Navarro-Lérida I, Sánchez-Alvarez M, Bosch M, Calvo C, López JA, Calvo E, Ferguson C, Giacomello M, Serafini A, Scorrano L, Enriquez JA, Balsinde J, Parton RG, Vázquez J, Pol A, Del Pozo MA (2016) Interplay between hepatic mitochondria-Associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep 6(1):1–10

    Google Scholar 

  • Saltiel AR, Pessin JE (2003) Insulin signaling in microdomains of the plasma membrane. Traffic 4(11):711–716

  • Sanguinetti AR, Mastick CC (2003) C-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal 15:289–298

    CAS  PubMed  Google Scholar 

  • Sanguinetti AR, Cao H, Corley Mastick C (2003) Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1. Biochem J 376:159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M, Scita G, Parton RG, Mayor S (2018) Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 9(1):1–16

    CAS  Google Scholar 

  • Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller HB, Fässler R (2013) Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14(6):509–519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel A, Volonté D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer PE, Lisanti MP (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10:457–463

    CAS  PubMed  Google Scholar 

  • Schlegel A, Arvan P, Lisanti MP (2001) Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 276:4398–4408

    CAS  PubMed  Google Scholar 

  • Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23(3):265–277

    CAS  PubMed  Google Scholar 

  • Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen S, Kumar S (2009) Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cell Mol Bioeng 2:218–230

    CAS  PubMed  Google Scholar 

  • Sengupta P, Philip F, Scarlata S (2008) Caveolin-1 alters Ca2 + signal duration through specific interaction with the Gαq family of G proteins. J Cell Sci 121(9):1363–1372

    CAS  PubMed  Google Scholar 

  • Senju Y, Suetsugu S (2015) Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II. Bioarchitecture 5:70–77

    PubMed  Google Scholar 

  • Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S (2011) Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 124:2032–2040

    CAS  PubMed  Google Scholar 

  • Senju Y, Rosenbaum E, Shah C, Hamada-Nakahara S, Itoh Y, Yamamoto K, Hanawa-Suetsugu K, Daumke O, Suetsugu S (2015) Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J Cell Sci 128:2766–2780

    CAS  PubMed  Google Scholar 

  • Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R (2007) Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem 282:5934–5943

    CAS  PubMed  Google Scholar 

  • Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ (2010) β-dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2 + release. J Cell Sci 123:3061–3070

    CAS  PubMed  Google Scholar 

  • Shi F, Sottile J (2008) Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 121:2360–2371

    CAS  PubMed  Google Scholar 

  • Shvets E, Bitsikas V, Howard G, Hansen CG, Nichols BJ (2015) Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat Commun 6(1):1–16

    Google Scholar 

  • Simón L, Campos A, Leyton L, Quest AFG (2020) Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer. Cancer Metastasis Rev 39:435–453

    PubMed  PubMed Central  Google Scholar 

  • Singer II (1979) IRWIN I. SINGER Institute for Medical Research of Bennington, Bennington, VT 0.5201, USA

  • Singh RD, Liu Y, Wheatley CL, Holicky EL, Makino A, Marks DL, Kobayashi T, Subramaniam G, Bittman R, Pagano RE (2006) Caveolar endocytosis and microdomain association of a glycosphingolipid analog is dependent on its sphingosine stereochemistry. J Biol Chem 281(41):30660–30668

    CAS  PubMed  Google Scholar 

  • Singh RD, Marks DL, Holicky EL, Wheatley CL, Kaptzan T, Sato SB, Kobayashi T, Ling K, Pagano RE (2010) Gangliosides and β1-integrin are required for caveolae and membrane domains. Traffic 11:348–360

    CAS  PubMed  Google Scholar 

  • Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains: detergent-free purification of caveolae membranes. J Biol Chem 271:9690–9697

    CAS  PubMed  Google Scholar 

  • Stahlhut M, Van Deurs B (2000) Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol Biol Cell 11:325–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiber JA, Seth M, Rosenberg PB (2009) Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol 281(41):30660–30668

    Google Scholar 

  • Stockand JD, Sansom SC (1998) Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiol Rev 78:723–744

    CAS  PubMed  Google Scholar 

  • Stoeber M, Stoeck IK, HéCurrency Signnni C, Bleck CKE, Balistreri G, Helenius A (2012) Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31:2350–2364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber M, Schellenberger P, Siebert CA, Leyrat C, Grünewald K, Helenius A (2016) Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proc Natl Acad Sci USA 113:E8069–E8078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    CAS  PubMed  Google Scholar 

  • Suchyna TM, Sachs F (2007) Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J Physiol 581(1):369–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD (2009) Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20(21):4531–4540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaney JS, Patel HH, Yokoyama U, Head BP, Roth DM, Insel PA (2006) Focal adhesions in (Myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J Biol Chem 281:17173–17179

    CAS  PubMed  Google Scholar 

  • Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C (2013) Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/pTRF. Physiol Rep. https://doi.org/10.1002/PHY2.8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagawa A, Mezzacasa A, Hayer A, Longatti A, Pelkmans L, Helenius A (2005) Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol 170:769–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taira J, Sugishima M, Kida Y, Oda E, Noguchi M, Higashimoto Y (2011) Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1. Biochemistry 50(32):6824–6831

    CAS  PubMed  Google Scholar 

  • Taniguchi K, Wu LW, Grivennikov SI, De Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519(7541):57–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi T, Maruyama N, Ogata T, Kasahara T, Nakanishi N, Miyagawa K, Naito D, Hamaoka T, Nishi M, Matoba S, Ueyama T (2016) PTRF/Cavin-1 deficiency causes cardiac dysfunction accompanied by cardiomyocyte hypertrophy and cardiac fibrosis. PLoS ONE 11(9):e0162513

    PubMed  PubMed Central  Google Scholar 

  • Teo JL, Gomez GA, Weeratunga S, Davies EM, Noordstra I, Budnar S, Katsuno-Kambe H, McGrath MJ, Verma S, Tomatis V, Acharya BR, Balasubramaniam L, Templin RM, McMahon KA, Lee YS, Ju RJ, Stebhens SJ, Ladoux B, Mitchell CA, Collins BM et al (2020) Caveolae control contractile tension for epithelia to eliminate tumor cells. Dev Cell 54:75–91. https://doi.org/10.1016/j.devcel.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  • Thomsen Peter, Roepstorff Kirstine, Stahlhut Martin, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thottacherry JJ, Kosmalska AJ, Kumar A, Vishen AS, Elosegui-Artola A, Pradhan S, Sharma S, Singh PP, Guadamillas MC, Chaudhary N, Vishwakarma R, Trepat X, del Pozo MA, Parton RG, Rao M, Pullarkat P, Roca-Cusachs P, Mayor S (2018) Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 9(1):1–14

    CAS  Google Scholar 

  • Torrino S, Shen W, Blouin CM, Mani SK, de Lesegno CV, Bost P, Grassart A, Köster D, Valades-Cruz CA, Chambon V, Johannes L, Pierobon P, Soumelis V, Coirault C, Vassilopoulos S, Lamaze C (2018) EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. J Cell Biol 217:4092–4105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Totaro A, Panciera T, Piccolo S (2018) YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 20:888–899. https://doi.org/10.1038/s41556-018-0142-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turek JJ, Leamon CP, Low PS (1993) Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J Cell Sci 106(1):423–430

    CAS  PubMed  Google Scholar 

  • Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA (2002) Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J 21(24):6791–6800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upla P, Marjomäki V, Kankaanpää P, Ivaska J, Hyypiä T, Van Der Goot FG, Heino I (2004) Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol Biol Cell 15(2):625–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentich JD, Popov V, Saada JI, Powell DW (1997) Phenotypic characterization of an intestinal subepithelial myofibroblast cell line. Am J Physiol Cell Physiol 272(5):C1513–C1524

    CAS  Google Scholar 

  • Verstraeten SV, Mackenzie GG, Oteiza PI (2010) The plasma membrane plays a central role in cells response to mechanical stress. Biochim Biophys Acta Biomembr 1798:1739–1749. https://doi.org/10.1016/j.bbamem.2010.06.010

    Article  CAS  Google Scholar 

  • Vidal-Quadras M, Holst MR, Francis MK, Larsson E, Hachimi M, Yau WL, Peränen J, Martín-Belmonte F, Lundmark R (2017) Endocytic turnover of Rab8 controls cell polarization. J Cell Sci 130(6):1147–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 280(5):L938–L946

    CAS  PubMed  Google Scholar 

  • Volonté D, Galbiati F, Pestell RG, Lisanti MP (2001) Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem 276:8094–8103

    PubMed  Google Scholar 

  • Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138(18):3907–3914

    CAS  PubMed  Google Scholar 

  • Wanaski SP, Ng BK, Glaser M (2003) Caveolin scaffolding region and the membrane binding region of Src form lateral membrane domains. Biochemistry 42:42–56

    CAS  PubMed  Google Scholar 

  • Wang H, Wang AX, Barrett EJ (2011) Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab 300:134–144

    Google Scholar 

  • Wang H, Wang AX, Aylor K, Barrett EJ (2015) Caveolin-1 phosphorylation regulates vascular endothelial insulin uptake and is impaired by insulin resistance in rats. Diabetologia 58:1344–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Yeh YT, Nguyen P, Limqueco E, Lopez J, Thorossian S, Guan KL, Li YSJ, Chien S (2016) Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci USA 113(41):11525–11530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Lollis EM, Bordeleau F, Reinhart-King CA (2019) Matrix stiffness regulates vascular integrity through focal adhesion kinase activity. FASEB J 33(1):1199–1208

    CAS  PubMed  Google Scholar 

  • Warner H, Wilson BJ, Caswell PT (2019) Control of adhesion and protrusion in cell migration by Rho GTPases. Curr Opin Cell Biol 56:64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Way M, Parton RG (1995) M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 376:108–112

    CAS  PubMed  Google Scholar 

  • Wehinger S, Ortiz R, Díaz MI, Aguirre A, Valenzuela M, Llanos P, Mc Master C, Leyton L, Quest AFG (2015) Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochim Biophys Acta Mol Basis Dis 1852:693–708. https://doi.org/10.1016/j.bbadis.2014.12.021

    Article  CAS  Google Scholar 

  • White CR, Frangos JA (2007) The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc B Biol Sci 362(1484):1459–1467

    CAS  Google Scholar 

  • Wickström SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin α5β1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62(19):5580–5589

    PubMed  Google Scholar 

  • Wickström SA, Lange A, Hess MW, Polleux J, Spatz JP, Krüger M, Pfaller K, Lambacher A, Bloch W, Mann M, Huber LA, Fässler R (2010) Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell 19:574–588

    PubMed  PubMed Central  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin genes: from cell biology to medicine. Ann Med 36:584–595

    CAS  PubMed  Google Scholar 

  • Wong TH, Dickson FH, Timmins LR, Nabi IR (2020) Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression. Cancer Metastasis Rev 6:8

    Google Scholar 

  • Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K (2009) Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 69(22):8594–8602

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, Hotta N, Shimada Y, Isomura H, Suzuki M, Fujimoto T, Takahashi T (2016) ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun 7:10060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Hayashi M, Ida L, Yamamoto M, Lu C, Kajino T, Cheng J, Nakatochi M, Isomura H, Yamazaki M, Suzuki M, Fujimoto T, Takahashi T (2019) ROR1-CAVIN3 interaction required for caveolae-dependent endocytosis and pro-survival signaling in lung adenocarcinoma. Oncogene 38:5142–5157. https://doi.org/10.1038/s41388-019-0785-7

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG, Ishikawa Y (1998) Caveolin is an activator of insulin receptor signaling. J Biol Chem 273:26962–26968

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev Cell 11:213–223

    CAS  PubMed  Google Scholar 

  • Yang L, Scarlata S (2017) Super-resolution visualization of caveola deformation in response to osmotic stress. J Biol Chem 292:3779–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Radel C, Hughes D, Kelemen S, Rizzo V (2011) P190 RhoGTPase-activating protein links the β1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol 31:376–383

    CAS  PubMed  Google Scholar 

  • Yang G, Xu H, Li Z, Li F (2014) Interactions of caveolin-1 scaffolding and intramembrane regions containing a CRAC motif with cholesterol in lipid bilayers. Biochim Biophys Acta Biomembr 1838:2588–2599. https://doi.org/10.1016/j.bbamem.2014.06.018

    Article  CAS  Google Scholar 

  • Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, Wu C, Zeng H, Liu Y (2016) Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget 7(13):16227

    PubMed  PubMed Central  Google Scholar 

  • Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A, Plomann M, Zhou J (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-pacsin 2-N-wasp complex. Hum Mol Genet 23(10):2769–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh YC, Ling JY, Chen WC, Lin HH, Tang MJ (2017) Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-14932-6

    Article  CAS  Google Scholar 

  • Yeow I, Howard G, Chadwick J, Mendoza-Topaz C, Hansen CG, Nichols BJ, Shvets E (2017) EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr Biol 27:2951–2962. https://doi.org/10.1016/j.cub.2017.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidel-Bar R, Geiger B (2010) The switchable integrin adhesome. J Cell Sci 123(9):1385–1388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zegers MM, Friedl P (2014) Rho GTPases in collective cell migration. Small GTPases 5(3):e983869

    Google Scholar 

  • Zhang B, Peng F, Wu D, Ingram AJ, Gao B, Krepinsky JC (2007) Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 19:1690–1700

    CAS  PubMed  Google Scholar 

  • Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99(17):11375–11380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL (2012) Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26(1):54–68

    PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B (2016) Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89(6):1248–1263

    CAS  PubMed  Google Scholar 

  • Zhu B, Swärd K, Ekman M, Uvelius B, Rippe C (2017) Cavin-3 (PRKCDBP) deficiency reduces the density of caveolae in smooth muscle. Cell Tissue Res 368(3):591–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD (2016) Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 27:2090–2106

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding were provided by Indian Council of Medical Research (Grant No. 35/03/2019-NANO/BMS) and Council of Scientific and Industrial Research, India (Grant No. 09/936(0146)/2016-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj Balasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buwa, N., Mazumdar, D. & Balasubramanian, N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membrane Biol 253, 509–534 (2020). https://doi.org/10.1007/s00232-020-00143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00143-0

Keywords

Navigation