Skip to main content
Log in

Anisotropy affects the lattice waves and phonon distributions in GaAs

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The stress-strain relationship, anisotropy, heavy- and light-hole structures, and the Phillips ionicity in GaAs are theoretically investigated by Bond matrices model as well as Zener and Every anisotropies. The results show that there is a simple correspondence between anisotropy and the extreme directions of these physical properties, i.e., [0 0 1], [1 1 0] and [1 1 1] directions. Meanwhile the lattice wave propagation, phonon focusing, and phonon distributions in GaAs are also theoretically studied in detail based on lattice-dynamical method. The slowness surface of three lattice waves are the mixing of longitudinal and transverse modes. The feature is that the lattice waves, saddle Gaussian curvatures, and caustic structures are modulated by the anisotropy. The topology in phonon distribution is discussed by the presence of caustics in the anisotropic flux of phonons emanating from a localized phonon distribution. Their topological structures show the phonon distribution and the phonon focusing. The anisotropy not only affects lattice wave propagation and phonon distribution, but influences the phonon focusing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Raya, D. Fuster, J.M. Lloren, Nanomaterials 9, 856 (2019)

    Article  Google Scholar 

  2. H.C. Chung, C.W. Chiu, M.F. Lin, Sci. Rep. 9, 2332 (2019)

    Article  ADS  Google Scholar 

  3. S.M. Sze, K.K. Ng,Physics of Semiconductor Devices, 3rd edn. (Wiley-Interscience, Hoboken, NJ, USA, 2006)

  4. J.M. Besson, J.P. Ltie, P. Alain et al., Phys. Rev. B 44, 4214 (1991)

    Article  ADS  Google Scholar 

  5. S. Liu, M.B. Sinclair, S. Saravi et al., Nano Lett. 16, 5426 (2016)

    Article  ADS  Google Scholar 

  6. V.F. Gili, L. Carletti, A. Locatelli et al., Opt. Express 24, 15965 (2016)

    Article  ADS  Google Scholar 

  7. K. Berland, C. Persson, J. Appl. Phys. 123, 205703 (2018)

    Article  ADS  Google Scholar 

  8. H. Tong, M.W. Wu, Phys. Rev. B 83, 235323–1 (2011)

    Article  ADS  Google Scholar 

  9. M. Janipour, I.B. Misirlioglu, K. Sendur, Materials 12, 2412 (2019)

    Article  ADS  Google Scholar 

  10. Y. Cui, C.M. Lieber, Science 291, 851 ( 2001)

    Article  ADS  Google Scholar 

  11. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  12. J. Johansson, L.S. Karlsson, C.P.T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, W. Seifert, Nat. Mater. 5, 574 (2006)

    Article  ADS  Google Scholar 

  13. F. Qian, S. Gradecak, Y. Li, H.G. Park, Y. Dong, Y. Ding, Z.L. Wang, M.C. Lieber, Nat. Mater. 7, 701 (2008)

    Article  ADS  Google Scholar 

  14. S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nature 468, 1084 (2010)

    Article  ADS  Google Scholar 

  15. C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276, 398 (1997)

    Article  Google Scholar 

  16. G. Viera, M. Mikikian, E. Bertran, P.R. Cabarrocas, L. Boufendi, J. Appl. Phys. 92, 4684 (2002)

    Article  ADS  Google Scholar 

  17. T. Kettler, L.Y. Karachinskii, N.N. Ledentsov et al., Appl. Phys. Lett. 89, 041113 (2006)

    Article  ADS  Google Scholar 

  18. L. Seravalli, G. Trevisi, P. Frigeri, R.J. Royce, D.J. Mowbray, J. Appl. Phys. 112, 034309 (2012)

    Article  ADS  Google Scholar 

  19. S. Ghanad-Tavakoli, M.A. Naser, D.A. Thompson, M.J. Deen, J. Appl. Phys. 106, 063533 (2009)

    Article  ADS  Google Scholar 

  20. M. Kaminska, Rev. Phys. Appl. 23, 793 (1988)

    Article  Google Scholar 

  21. M. Kaminska, M. Skawronski, J. Lagowski, J.M. Parsey, H.C. Gatos, Appl. Phys. Lett. 43, 302 (1983)

    Article  ADS  Google Scholar 

  22. R.F.C. Farrow,Molecular Beam Epitaxy: Applications to Key Materials (Noyes, New Jersey, 1995)

  23. T. Asano, Z. Fang, A. Madhukar, J. Appl. Phys. 107, 073111 (2010)

    Article  ADS  Google Scholar 

  24. O.V. Vakulenko, S.L. Golovynskyi, S.V. Kondratenko, J. Appl. Phys. 110, 043717 (2010)

    Article  ADS  Google Scholar 

  25. S.L. Golovynskyi, O.I. Dacenko, S.V. Kondratenko, S.R. Lavoryk, Y.I. Mazur et al., J. Appl. Phys. 119, 184303 (2016)

    Article  ADS  Google Scholar 

  26. S.L. Golovynskyi, Y.I. Mazur, Z.M. Wang, M.E. Ware, O.V. Vakulenko, G.G. Tarasov, G.J. Salamo, Phys. Lett. A 378, 2622 (2014)

    Article  ADS  Google Scholar 

  27. S.V. Kondratenko, O.V. Vakulenko, Y.I. Mazur, V.G. Dorogan, E.J. Marega, M. Benamara, M.E. Ware, G.J. Salamo, J. Appl. Phys. 116, 193707 (2014)

    Article  ADS  Google Scholar 

  28. S.L. Golovynskyi, L. Seravalli, G. Trevisi, P. Frigeri, E. Gombia, O.I. Dacenko, S.V. Kondratenko, J. Appl. Phys. 117, 214312 (2015)

    Article  ADS  Google Scholar 

  29. W.L. Bond,Crystal Technology (John Wiley and Sons, New York, 1976)

  30. G.L. Koos, J.P. Wolfe, Phys. Rev. B 29, 6015 (1984)

    Article  ADS  Google Scholar 

  31. Y. Liu, L.T. Gao, G. Lu, Arch. Appl. Mech. 77, 407 (2007)

    Article  ADS  Google Scholar 

  32. P. Brüesch,Phonons: Theory and Experiments I (Springer-Verlag Berlin Heidelberg, New York, 1982)

  33. P.S. Spoor, J.D. Maynard, Appl. Phys. Lett. 70, 1959 (1997)

    Article  ADS  Google Scholar 

  34. C. Zener,Elasticity and Anelasticity of Metals (University Chicago Press, Chicago, 1984)

  35. A.G. Every, Phys. Rev. B 22, 1746 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Adachi, inProperties of Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, England, 2005), p. 45

  37. Y.P.C. Calvin, L.C. Shun, Phys. Rev. B 46, 4111 (1992)

    Google Scholar 

  38. M. Kitamura, S. Muramatsu, W.A. Harrison, Phys. Rev. B. 46, 1350 (1992)

    Article  ADS  Google Scholar 

  39. A.H. Nayfeh,Wave Propagation in Layered Anisotropic Media with Applications to Composites (Elsevier, Amsterdam, 1995)

  40. A.G. Every, Phys. Rev. B. 24, 3456 (1981)

    Article  ADS  Google Scholar 

  41. P.Y. Tang, G.H. Huang, Q.L. Xie, J.L. Huang, F. Ning, Compos. Mater. Sci. 118, 117 (2016)

    Article  Google Scholar 

  42. G.A. Northrop, J.P. Wolfe, Phys. Rev. B. 22, 6196 (1980)

    Article  ADS  Google Scholar 

  43. B.A. Auld, inAcoustic Fields and Waves in Solids (John Wiley and Sons, New York 1973), Vol. 1

  44. S. Liu, P. Hänggi, N. Li, J. Ren, B. Li, Phys. Rev. Lett. 112, 040601 (2014)

    Article  ADS  Google Scholar 

  45. J. Sólyom, inFundamentals of the Physics of Solids (Springer Berlin Heidelberg, New York, 2007), Vol. 1

  46. T. Poston, I.N. Stewart,Catastrophe Theory and its Applications (Pitman, London, 1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Fu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H. Anisotropy affects the lattice waves and phonon distributions in GaAs. Eur. Phys. J. B 93, 199 (2020). https://doi.org/10.1140/epjb/e2020-10255-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10255-6

Keywords

Navigation