Skip to main content
Log in

Effect of a high-resolution global crustal model on gravimetric geoid determination: a case study in a mountainous region

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A precise gravimetric geoid model is determined by using Stokes formula assuming that there is no topography above the geoid. Then, the geoid model is simply corrected by considering the constant crustal density of 2670 kg m−3 for topographical mass. In fact, the actual density of topographical mass differs about ±20% from the constant value. Recently a global crustal density model within 30″ resolution has been released by the University of New Brunswick in Canada. The paper is devoted to the study of the effect of using this model on the accuracy of gravimetric geoid in a mountainous region in Turkey. Numerical results prove that the differences in the geoid height due to this model may reach up to several decimetres, which should not be ignored in a precise geoid modelling with 1-cm geoid. Thus, it is concluded that the effect of topographical density variations, contained in this model, is significant and should be taken into account in precise geoid determination, particularly in mountainous regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbak R.A. and Ustun A., 2015. A software package for computing a regional gravimetric geoid model by the KTH method. Earth Sci. Inform., 8, 255–265.

    Article  Google Scholar 

  • Abbak R.A., Erol B. and Ustun A., 2012a. Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Comput. Geosci, 48, 31–40.

    Article  Google Scholar 

  • Abbak R.A., Sjöberg L.E., Ellmann A. and Ustun A., 2012b. A precise gravimetric geoid model in mountainous areas with scarce gravity data: A case study in central Turkey. Stud. Geophys. Geod., 56, 909–927.

    Article  Google Scholar 

  • Ågren J., Sjöberg L.E. and Kiamehr R., 2009. The new gravimetric quasigeoid model KTH08 over Sweden. J Appl. Geodesy, 3, 143–159.

    Article  Google Scholar 

  • Akyilmaz O., Ustun A., Aydin C., Arslan N., Doganalp S., Guney C., Mercan H., Uygur S.O., Uz M. and Yagci O., 2016. High Resolution Gravity Field Modelling and Tracking Regional Mass by Means of Low Earth Orbit Satellites. Technical Report, Project No. 113Y155, Technical University of Istanbul, Istanbul, Turkey.

    Google Scholar 

  • Amante C. and Eakins B., 2009. ETOPO1: 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, https://www.ngdc.noaa.gov/mgg/global/.

    Google Scholar 

  • Bildirici I.O. and Abbak R.A., 2017. Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selcuk Univ. J. Eng. Sci. Technol, 5, 16–25.

    Google Scholar 

  • Bildirici I.O., Ustun A., Selvi H.Z., Abbak R.A. and Bugdayci I., 2009. Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartogr. Geogr. Inf. Sci., 36, 95–104.

    Article  Google Scholar 

  • Ellmann A. and Sjöberg L.E., 2004. Ellipsoidal correction for the modified Stokes formula. Boll. Geod. Sci. Affin., 63, 153–172.

    Google Scholar 

  • Farahani H.H., Slobbe D.C., Klees R. and Seitz K., 2017. Impact of accounting for coloured noise in radar altimetry data on a regional quasigeoid model. J. Geodesy, 91, 97–112.

    Article  Google Scholar 

  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S Shimada J., Umland J., Werner M., Oskin M., Burbank D. and Alsdorf D., 2007. The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

    Article  Google Scholar 

  • Featherstone W.E., Lyon T.J. and Mccubbine J.C., 2019. Potentially misleading GPS leveling-based assessment of gravimetric geoid or quasigeoid models due to vertical land motion and different GPS processing software. J. Surv. Eng.-ASCE, 145, 04019015.

    Article  Google Scholar 

  • Foroughi I., Vaníček P., Kingdon R.W., Goli M., Sheng M., Afrasteh Y., Novák P. and Santos M.C., 2019. Sub-centimetre geoid. J. Geodesy, 93, 849–868.

    Article  Google Scholar 

  • Harkness W., 2012. The Solar Parallax and Its Related Constants: Including the Figure and Density of the Earth. Nabu Press, Charleston, SC.

    Google Scholar 

  • Hofmann-Wellenhof B. and Moritz H., 2005. Physical Geodesy. Springer-Verlag, Wien, Austria.

    Google Scholar 

  • Huang J., Vaníček P., Pagiatakis S.D. and Brink W., 2001. Effect of topographical density on geoid in the Canadian Rocky Mountains. J. Geodesy, 74, 805–815.

    Article  Google Scholar 

  • Kiamehr R., 2006a. A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J. Geodesy, 79, 602–612.

    Article  Google Scholar 

  • Kiamehr R., 2006b. The impact of lateral density variation model in the determination of precise gravimetric geoid in mountainous areas: a case study of Iran. Geophys. J. Int., 167, 521–527.

    Article  Google Scholar 

  • Kotsakis C. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–421.

    Article  Google Scholar 

  • Kuhn M., 2003. Geoid determination with density hypotheses from isostatic models and geological information. J. Geodesy, 77, 50–65.

    Article  Google Scholar 

  • Laske G., Masters G., Ma Z. and Pasyanos M., 2012. CRUST 1.0: An updated global model of Earth’s crust. Geophysical Research Abstracts, 14, EGU2012-3743-1.

    Google Scholar 

  • Laske G., Ma Z., Masters G. and Pasyanos M., 2013a. CRUST 1.0: A new global crustal model at 1 × 1 degree. https://igppweb.ucsd.edu/gabi/crust1.html.

    Google Scholar 

  • Laske G., Ma Z. Masters G. and Pasyanos M., 2013b. CRUST 2.0: A new global crustal model at 2 × 2 degree.https://igppweb.ucsd.edu/gabi/crust2.html.

    Google Scholar 

  • Laske G., Ma Z., Masters G. and Pasyanos M., 2013c. CRUST 5.1: A new global crustal model at 5 × 5 degree. https://igppweb.ucsd.edu/gabi/crust.html.

    Google Scholar 

  • Martinec Z., 1993. Effect of Lateral Density Variations of Topographical Masses in Improving Geoid Model Accuracy over Canada. Technical Report. Project No. 23244-2-4356, University of New Brunswick, Canada.

    Google Scholar 

  • Sheng M.B., Shaw C., Vaníček P., Kingdon R.W., Santos M. and Foroughi I., 2019. Formulation and validation of a global laterally varying topographical density model. Tectonophysics, 762, 45–60.

    Article  Google Scholar 

  • Sjöberg L.E., 1984. Least Squares Modification of Stokes and Vening-Meinesz Formulas by Accounting for Errors of Truncation, Potential Coefficients and Gravity Data. Technical Report. Department of Geodesy, Institute of Geophysics, University of Uppsala, Sweden.

    Google Scholar 

  • Sjöberg L.E., 1991. Refined least squares modification of Stokes’ formula. Manuscripta Geodaetica, 16, 367–375.

    Google Scholar 

  • Sjöberg L.E., 1999. The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. J. Geodesy, 73, 362–366.

    Article  Google Scholar 

  • Sjöberg L.E., 2003a. A general model of modifying Stokes’ formula and its least squares solution. J. Geodesy, 77, 790–804.

    Google Scholar 

  • Sjöberg L.E., 2003b. A solution to the downward continuation effect on the geoid determination by Stokes’ formula. J. Geodesy, 77, 94–100.

    Article  Google Scholar 

  • Sjöberg L.E., 2004. The effect on the geoid of lateral topographic density variations. J. Geodesy, 78, 34–39.

    Google Scholar 

  • Sjöberg L.E., 2007. The topographic bias by analytical continuation in physical geodesy. J. Geodesy, 81, 345–350.

    Article  Google Scholar 

  • Sloss P.W., 1988. ETOPO 5: A new global topography model at 5 × 5 arc-mins. https://www.ngdc.noaa.gov/mgg/global/etopo5.html.

    Google Scholar 

  • Stokes G.G., 1849. On the variations of gravity on the surface of the Earth. Trans. Cambridge Phil. Soc., 8, 672–695.

    Google Scholar 

  • Ustun A. and Abbak R.A., 2010. On global and regional spectral evaluation of global geopotential models. J. Geophys. Eng., 7, 369–370.

    Article  Google Scholar 

  • Yildiz H., Forsberg R., Ågren J., Tscherning C.C. and Sjöberg L.E., 2012. Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J. Geod. Sci., 2, 53–64.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks to Assoc. Prof. Dr. Rahmi Aksoy at Geology Department at Konya Technical University for his beneficial discussion during the compilation of the manuscript. The gravity and GNSS-levelling data were provided by two projects funded by the Research Fund of Selcuk University in Turkey under grants 09-101-009 and 17-401-084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Alpay Abbak.

Additional information

Computer code availability: The software exploited in the present study was developed in C programming language, which is freely available under the license of GNU public. Interested readers can obtain the software with experimental data from the author. In order to learn how it works, please see Abbak and Ustun (2015). Inquiries and bug reports about the software are welcome to the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbak, R.A. Effect of a high-resolution global crustal model on gravimetric geoid determination: a case study in a mountainous region. Stud Geophys Geod 64, 436–451 (2020). https://doi.org/10.1007/s11200-020-1023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-020-1023-z

Keywords

Navigation