Skip to main content
Log in

Reference Model Payload for Ice Giant Entry Probe Missions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Descent probes afford the opportunity to make essential atmospheric measurements that are beyond the reach of remote sensing, including the atmospheric abundances of noble gases and key isotopes, and the structure of the atmosphere beneath the cloud tops. Measurements are defined as Tier 1, representing threshold science required to justify the probe mission, and Tier 2 representing valuable science that significantly complement and enhance the threshold measurements, but of themselves are not sufficient to justify the mission. Tier 1 measurements comprise atmospheric noble gas abundances including helium, key noble gas isotope ratios, and the thermal structure of the atmosphere. Instrumentation required to achieve the Tier 1 measurements include a mass spectrometer, a helium abundance detector, and an atmospheric structure instrument comprising both sensors for pressure, temperature, and atmospheric acoustic properties (speed of sound). Tier 1 science can be achieved with a probe making measurements near one to several bars. Tier 2 science includes measurements of key isotopic ratios, the abundances of atmospheric condensables and disequilibrium species, atmospheric dynamics, the net radiative flux transfer profile of the atmosphere, and the location, composition, properties, and structure of the clouds. To achieve all the Tier 2 science objectives requires a probe descending through at least ten bars carrying the full Tier 1 suite of instruments as well as a nephelometer, net flux radiometer, and an ultrastable oscillator to enable Doppler wind tracking of the probe throughout descent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The tropopause is coldest point in the atmosphere, separating the stratosphere above from the troposphere below.

References

  • M. Allison, R.F. Beebe, B.J. Conrath, D.P. Hinson, A.P. Ingersoll, Uranus atmospheric dynamics and circulation, in Uranus (1991), pp. 253–295

    Google Scholar 

  • C.S. Arridge et al., Uranus pathfinder: exploring the origins and evolution of ice giant planets. Exp. Astron. 33, 753–791 (2012)

    ADS  Google Scholar 

  • C.S. Arridge et al., The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planet. Space Sci. 104, 122–140 (2014)

    ADS  Google Scholar 

  • S. Aslam, A. Akturk, G. Quilligan, A radiation hard multi-channel digitizer ASIC for operation in the harsh Jovian environment, in Extreme Environment Electronics, ed. by J.D. Cressler, H.A. Mantooth (CRC Press, Boca Raton, 2012). ISBN 978-1-4398-7430-1

    Google Scholar 

  • S. Aslam, M. Amato, D.H. Atkinson, A. Colaprete, T. Hewagama, D.E. Jennings, J.I. Lunine, C.A. Nixon, A.A. Simon-Miller, O. Mousis, G.T. Quilligan, E.J. Wollack, Net flux radiometer for a Saturn probe, in European Planetary Science Congress 2015, 27 September–2 October, 2015, Nantes, France (2015)

    Google Scholar 

  • S. Aslam, M. Amato, D.H. Atkinson, T. Hewagama, D.E. Jenning, C.A. Nixon, O. Mousis, A compact, multi-view net flux radiometer for future Uranus and Neptune probes, in Workshop on In Situ Exploration of the Ice Giants, 25–27 January, 2019, Marseille, France (2019)

    Google Scholar 

  • S. Aslam, R.K. Achterberg, S.B. Calcutt, V. Cottini, N.J.P. Gorius, T. Hewagama, P.G. Irwin, C.A. Nixon, G. Quilligan, M.C. Roos, A.A. Simon, D. Tran, G. Villanueva, Advanced net flux radiometer for the ice giants. Space Sci. Rev. 216, 11 (2020, this issue)

    ADS  Google Scholar 

  • D.H. Atkinson, J.B. Pollack, A. Seiff, Galileo Doppler measurements of the deep zonal winds at Jupiter. Science 272, 842 (1996)

    ADS  Google Scholar 

  • D.H. Atkinson, A.P. Ingersoll, A. Seiff, Deep winds on Jupiter as measured by the Galileo probe. Nature 388, 649–650 (1997)

    ADS  Google Scholar 

  • D.H. Atkinson, J.B. Pollack, A. Seiff, The Galileo probe Doppler wind experiment: measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22911–22928 (1998)

    ADS  Google Scholar 

  • D.H. Atkinson, T.R. Spilker, J. Lunine, A. Simon-Miller, S.K. Atreya, W. Brinckerhoff, A. Colaprete, A. Coustenis, T. Guillot, P. Mahaffy, K. Reh, L. Spilker, A shallow entry probe mission to Saturn, in EGU General Assem. Conf. Abstract, vol. 14 (2012), p. 3172

    Google Scholar 

  • D.H. Atkinson, A. Coustenis, J. Lunine, A. Simon-Miller, S.K. Atreya, W. Brinckerhoff, A. Colaprete, A. Coustenis, T. Guillot, P. Mahaffy, K. Reh, L. Spilker, T.R. Spilker, C. Webster, Science from Saturn entry probes, in European Planetary Science Conference, 8–13 September, London (2013)

    Google Scholar 

  • D. Atkinson, J.I. Lunine, A.A. Simon-Miller, S.K. Atreya, W. Brinckerhoff, A. Colaprete, A. Coustenis, L.N. Fletcher, T. Guillot, J.-P. Lebreton, P. Mahaffy, O. Mousis, G.S. Orton, K. Reh, L.J. Spilker, T.R. Spilker, C. Webster, In situ probe science at Saturn, in 11th International Planetary Probe Workshop 1795 (2014), p. 8005

    Google Scholar 

  • D. Atkinson, A.A. Simon, D. Banfield, S. Atreya, J. Blacksberg, W. Brinckerhoff, A. Colaprete, A. Coustenis, L. Fletcher, T. Guillot, M. Hofstadter, J. Lunine, P. Mahaffy, M. Marley, O. Mousis, T. Spilker, M. Trainer, C. Webster, Exploring Saturn – the Saturn PRobe interior and aTmosphere explorer (SPRITE) mission, in AAS/Division Planetary Science Meeting Abstract, vol. 48 (2016), p. 123.29

    Google Scholar 

  • S. Atreya, Personal Communication

  • S.K. Atreya, A.S. Wong, Clouds of Neptune and Uranus, in Proceedings, International Planetary Probe Workshop, NASA Ames (2004). NASA CP-2004–213456

    Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, H.B. Niemann, M.H. Wong, T.C. Owen, Composition and origin of the atmosphere of Jupiter – an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003)

    ADS  Google Scholar 

  • S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, O. Mousis, The origin and evolution of Saturn, with exoplanet perspective. ArXiv e-prints (2016). arXiv:1606.04510

  • S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, O. Mousis, The origin and evolution of Saturn, with exoplanet perspective, in Saturn in the 21st Century, ed. by K.H. Baines, F.M. Flasar, N. Krupp, T. Stallard (Cambridge University Press, Cambridge, 2019), pp. 5–43

    Google Scholar 

  • H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J. De Keyser, E. Neefs, D. Nevejans, H. Réme, C. Aoustin, C. Mazelle, J.-L. Médale, J.A. Sauvaud, J.-J. Berthelier, J.-L. Bertaux, L. Duvet, J.-M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, H. Wollnik, Rosina Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007)

    ADS  Google Scholar 

  • D. Banfield, P. Gierasch, R. Dissly, Planetary descent probes: polarization nephelometer and hydrogen ortho/para instruments, in IEEE Aerospace Conference paper, vol. #1294 (2005), pp. 691–694

    Google Scholar 

  • K. Batygin, M.E. Brown, Early dynamical evolution of the solar system: pinning down the initial conditions of the nice model. Astrophys. J. 716, 1323–1331 (2010)

    ADS  Google Scholar 

  • K. Batygin, M.E. Brown, H. Betts, Instability-driven dynamical evolution model of a primordially five-planet outer solar system. Astrophys. J. 744, L3 (2012)

    ADS  Google Scholar 

  • M.K. Bird, M. Allison, S.W. Asmar, D.H. Atkinson, I.M. Avruch, R. Dutta-Roy, Y. Dzierma, P. Edenhofer, W.M. Folkner, L.I. Gurvits, D.V. Johnston, D. Plettemeier, S.V. Pogrebenko, R.A. Preston, G.L. Tyler, The vertical profile of winds on Titan. Nature 438, 785–791 (2005)

    Google Scholar 

  • J. Bishop, S.K. Atreya, P.N. Romani, G.S. Orton, B.R. Sandel, R.V. Yelle, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. Arizona Press, Tucson, 1995), p. 427. ISBN 0816515255

    Google Scholar 

  • R.W. Boese, R.J. Twarowski, J. Gilland, R.E. Hassig, F.G. Brown, The infrared radiometer on the sounder probe of the Pioneer Venus mission. IEEE Trans. Geosci. Remote Sens. 18, 97–100 (1980)

    ADS  Google Scholar 

  • L.E. Bright, Galileo Probe-Orbiter Relay Link Integration Report, 1625145, Rev. A (internal document), Jet Propulsion Laboratory, Institute of Technology, Pasadena, California (1984)

  • F.G. Brown, J. Gilland, R. Hassig, R.W. Boese, Pioneer-Venus Large probe Infrared Radiometer (LIR) optical system, in Proc. SPIE 0124, Modern Utilization of Infrared Technology III (1977). https://doi.org/10.1117/12.955851

    Chapter  Google Scholar 

  • T. Cavalie, O. Venot, F. Selsis, F. Hersant, P. Hartogh, J. Leconte, Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: how convection inhibition can affect the derivation of deep oxygen abundances. Icarus 291, 1–16 (2017)

    ADS  Google Scholar 

  • J.E. Chambers, Making more Terrestrial Planets. Icarus 152, 205–224 (2001). https://doi.org/10.1006/icar.2001.6639

    Article  ADS  Google Scholar 

  • J.E. Chambers, G.W. Wetherill, Planets in the asteroid belt. Meteorit. Planet. Sci. 36, 381–399 (2001)

    ADS  Google Scholar 

  • K.C. Clausen, H. Hassan, M. Verdant, P. Couzin, G. Huttin, M. Brisson, C. Sollazzo, J.-P. Lebreton, The Huygens probe system design. Space Sci. Rev. 104, 155–189 (2002)

    ADS  Google Scholar 

  • L. Colin, D.M. Hunten, Pioneer Venus experiment descriptions. Space Sci. Rev. 20, 451–525 (1977)

    ADS  Google Scholar 

  • B. Conrath, R. Hanel, D. Gautier, A. Marten, G. Lindal, The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. 92, 15003–15010 (1987)

    ADS  Google Scholar 

  • B.J. Conrath, F.M. Flasar, P.J. Gierasch, Thermal structure and dynamics of Neptune’s atmosphere from Voyager measurements. J. Geophys. Res. 96, 18 (1991)

    Google Scholar 

  • B.J. Conrath, D. Gautier, T.C. Owen, R.E. Samuelson, Constraints on N2 in Neptune’s atmosphere from Voyager measurements. Icarus 101, 168–171 (1993)

    ADS  Google Scholar 

  • S.E. Dodson-Robinson, P. Bodenheimer, The formation of Uranus and Neptune in solid-rich feeding zones: connecting chemistry and dynamics. Icarus 207, 491–498 (2010)

    ADS  Google Scholar 

  • G. Durry, A. Hauchecorne, J. Ovarlez, H. Ovarlez, I. Pouchet, V. Zeninari, B. Parvitte, In situ measurement of H2O and CH4 with telecommunication laser diodes in the lower stratosphere: dehydration and indication of a tropical air intrusion at midlatitudes. J. Atmos. Chem. 43(3), 175–194 (2002)

    Google Scholar 

  • G. Durry, J. Li Sheng, I.E. Vinogradov, A.G. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zéninari, Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission. Appl. Phys. B, Lasers Opt. 99, 339–351 (2010)

    ADS  Google Scholar 

  • J. Elliott, M. Hofstadter, A.A. Simon, K. Reh, Ice giants. Pre-decadal Survey Mission Study Report. JPL D-100520 (2017)

  • T. Encrenaz, B. Schulz, P. Drossart, E. Lellouch, H. Feuchtgruber, S.K. Atreya, The ISO spectra of Uranus and Neptune between 2.5 and 4.2 μm: constraints on albedos and \(\mbox{H}_{3}+\). Astron. Astrophys. 358, L83–L87 (2000)

    ADS  Google Scholar 

  • F. Ferri, G. Colombatti, A. Aboudan, C. Bettanini, S. Debei, A.M. Harri, J.P. Lebreton, F. Montmessin, J.J. Berthelier, A. LeGall, R. Modolo, K. Aplin, A. Coustenis, The atmospheric structure of the ice giant planets from in situ measurements by an entry probes. Space Sci. Rev. (2020, this issue). https://doi.org/10.1007/s11214-020-00749-9

    Article  Google Scholar 

  • H. Feuchtgruber, E. Lellouch, G. Orton, T. de Graauw, B. Vandenbussche, B. Swinyard, R. Moreno, C. Jarchow, F. Billebaud, T. Cavalie, S. Sidher, P. Hartogh, The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013)

    Google Scholar 

  • L.N. Fletcher, G.S. Orton, N.A. Teanby, P.G.J. Irwin, Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 202, 543–564 (2009)

    ADS  Google Scholar 

  • L.N. Fletcher, P. Drossart, M. Burgdorf, G.S. Orton, T. Encrenaz, Neptune’s atmospheric composition from AKARI infrared spectroscopy. Astron. Astrophys. 514, A17 (2010)

    ADS  Google Scholar 

  • L.N. Fletcher, I. de Pater, G.S. Orton, H.B. Hammel, M.L. Sitko, P.G.J. Irwin, Neptune at summer solstice: zonal mean temperatures from ground-based observations, 2003–2007. Icarus 231, 146–167 (2014)

    ADS  Google Scholar 

  • W.M. Folkner, R. Woo, S. Nandi, Ammonia abundance in Jupiter’s atmosphere derived from the attenuation of the Galileo probe’s radio signal. J. Geophys. Res. 103, 22847–22856 (1998)

    ADS  Google Scholar 

  • J.J. Fortney, N. Nettelmann, The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilli, A. Bar-Nun, M.A. Barucci, G. Bianchini, W. Borucki, M. Coradini, A. Coustenis, P. Falkner, E. Flamini, R. Grard, M. Hamelin, A.M. Harri, G.W. Leppelmeier, J.J. Lopez-Moreno, J.A.M. McDonnell, C.P. McKay, F.H. Neubauer, A. Pedersen, G. Picardi, V. Pirronello, R. Rodrigo, K. Schwingenschuh, A. Seiff, H. Svedhem, V. Vanzani, J. Zarnecki, The characterisation of Titan’s atmospheric physical properties by the Huygens Atmospheric Structure Instrument (HASI). Space Sci. Rev. 104(1), 397–434 (2002)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilli, A.J. Ball, A. Bar-Nun, M.A. Barucci, C. Bettanini, G. Bianchini, W. Borucki, G. Colombatti, M. Coradini, A. Coustenis, S. Debei, P. Falkner, G. Fanti, E. Flamini, V. Gaborit, R. Grard, M. Hamelin, A.M. Harri, B. Hathi, I. Jernej, M.R. Leese, A. Lehto, J.J. L’opez-Moreno, T. Mäkinen, J.A.M. McDonnell, C.P. McKay, G. Molina-Cuberos, F.M. Neubauer, V. Pirronello, R. Rodrigo, B. Saggin, K. Schwingenschuh, A. Seiff, F. Simoes, H. Svedhem, T. Tokano, M.C. Towner, R. Trautner, P. Withers, J.C. Zarnecki, Titans physical characteristics measured by the Huygens Atmospheric Structure Instrument (HASI). Nature 438, 785–791 (2005)

    ADS  Google Scholar 

  • D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. 550, L227–L230 (2001)

    ADS  Google Scholar 

  • J.F. Gayet, O. Crépel, J.F. Fournol, S. Oshchepkov, A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: theoretical design. Ann. Geophys. 15, 451–459 (1997)

    ADS  Google Scholar 

  • R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    ADS  Google Scholar 

  • H. Grimm, D.J. Eatough, Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J. Air Waste Manage. Assoc. 59, 101–107 (2009)

    Google Scholar 

  • T. Guillot, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005)

    ADS  Google Scholar 

  • D.M. Harland, R. Lorenz, Space Systems Failures/Disasters and Rescues of Satellites, Rockets and Space Probes. Springer-Praxis Books in Space Exploration (Praxis Publishing Ltd., Chichester, 2005). ISBN 0-387-21519-0

    Google Scholar 

  • R. Helled, T. Guillot, Internal structure of giant and icy planets: importance of heavy elements and mixing. ArXiv e-prints (2017). arXiv:1705.09320

  • R. Helled, J.D. Anderson, M. Podolak, G. Schubert, Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2011)

    ADS  Google Scholar 

  • W.B. Hubbard, M. Podolak, D.J. Stevenson, The interior of Neptune, in Neptune and Triton, ed. by Cruishank (University of Arizona, Tucson, 1995), pp. 109–138

    Google Scholar 

  • R. Hueso, I. de Pater, A. Simon, A. Sanchez-Lavega, M. Delcroix, M.H. Wong, J.W. Tollefson, C. Baranec, K. de Kleer, S.H. Luszcz-Cook, G.S. Orton, H.B. Hammel, J.M. Gomez-Forrellad, I. Ordonez-Etxeberria, L. Sromovsky, P. Fry, F. Colas, J.F. Rojas, S. Perez-Hoyos, P. Gorczynski, J. Guarro, W. Kivits, P. Miles, D. Millika, P. Nicholas, J. Sussenbach, A. Wesley, K. Sayanagi, S.M. Ammons, E.L. Gates, D. Gavel, E. Victor Garcia, N.M. Law, I. Mendikoa, R. Riddle, Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus 295, 89–109 (2017)

    ADS  Google Scholar 

  • P.G.J. Irwin, Giant planets of our solar system, in Giant Planets of Our Solar System: Atmospheres, Composition, and Structure. Springer Praxis Books. (Springer Berlin Heidelberg, Berlin, 2009). ISBN 978-3-540-85157-8

    Google Scholar 

  • P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.S. Orton, B. Bézard, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420 (2018)

    ADS  Google Scholar 

  • P.G.J. Irwin, D. Toledo, A.S. Braude, R. Bacon, P.M. Weilbacher, N.A. Teanby, L.N. Fletcher, G.S. Orton, Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune’s atmosphere from VLT/MUSE Narrow Field Mode Observations. Icarus 331, 69 (2019a)

    ADS  Google Scholar 

  • P.G.J. Irwin, D. Toledo, R. Garland, N.A. Teanby, L.N. Fletcher, G.S. Orton, B. Bézard, Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere. Icarus 321, 550 (2019b)

    ADS  Google Scholar 

  • E. Karkoschka, M. Tomasko, The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 202, 287–309 (2009)

    ADS  Google Scholar 

  • E. Karkoschka, M.G. Tomasko, The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211, 780–797 (2011)

    ADS  Google Scholar 

  • T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, J.-L. Bertaux, TDLAS, a diode laser sensor for the in situ monitoring of H2O and CO2 isotopes, in 35th COSPAR Scientific Assembly, vol. 35 (2004), p. 2115

    Google Scholar 

  • E. Lellouch, R. Moreno, G.S. Orton, H. Feuchtgruber, T. Cavalie, J.I. Moses, P. Hartogh, C. Jarchow, H. Sagawa, New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations. Astron. Astrophys. 579, A121 (2015)

    ADS  Google Scholar 

  • H.F. Levison, G.R. Stewart, Remarks on modeling the formation of Uranus and Neptune. Icarus 153, 224–228 (2001)

    ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, C. Van Laerhoven, R. Gomes, K. Tsiganis, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008)

    ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, K. Tsiganis, D. Nesvorný, R. Gomes, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

    ADS  Google Scholar 

  • G.F. Lindal, The atmosphere of Neptune – an analysis of radio occultation data acquired with Voyager 2. Astron. J. 103, 967–982 (1992)

    ADS  Google Scholar 

  • G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, The atmosphere of Uranus – results of radio occultation measurements with Voyager 2. J. Geophys. Res. 92, 14987–15001 (1987)

    ADS  Google Scholar 

  • J.J. Lissauer, formation of the outer planets. Space Sci. Rev. 116, 11–24 (2005)

    ADS  Google Scholar 

  • K. Lodders, H. Palme, H.-P. Gail, Abundances of the elements in the solar system, in Landolt-Börnstein, ed. by J.E. Trümper. New Series, vol. VI/4B (Springer, Berlin, Heidelberg, New York, 2009), pp. 560–630. Chapter 4.4

    Google Scholar 

  • R.D. Lorenz, Speed of sound in outer planet atmospheres. Planet. Space Sci. 47, 67 (1999)

    ADS  Google Scholar 

  • T. Lurton, J.-B. Renard, D. Vignelles, M. Jeannot, R. Akiki, J.-L. Mineau, T. Tonnelier, Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements. Atmos. Meas. Tech. 7, 931–939 (2014)

    Google Scholar 

  • P.R. Mahaffy, T.M. Donahue, S.K. Atreya, T.C. Owen, H.B. Niemann, Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere. Space Sci. Rev. 84, 251–263 (1998)

    ADS  Google Scholar 

  • P.R. Mahaffy et al., The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012)

    ADS  Google Scholar 

  • K. Mandt, O. Mousis, J. Lunine, B. Marty, T. Smith, A. Luspay-Kuti, A. Aguichine, Tracing the origins of the ice giants through noble gas isotopic composition. Space Sci. Rev. 216, 99 (2020, this issue)

    ADS  Google Scholar 

  • M.Ya. Marov, V.E. Lystsev, V.N. Lebedev, N.L. Lukasevich, V.P. Shari, The structure and microphysical properties of the Venus clouds: Venera 9, 10, and 11 data. Icarus 44, 608 (1980)

    ADS  Google Scholar 

  • B. Marty, K. Altwegg, H. Balsiger, A. Bar-Nun, D.V. Bekaert, J.-J. Berthelier, A. Bieler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, O. Mousis, T. Owen, H. Réme, M. Rubin, T. Sémon, C.-Y. Tzou, J.H. Waite, P. Wurz, Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069 (2017)

    ADS  Google Scholar 

  • F.S. Milos, Galileo probe heat shield ablation experiment. J. Spacecr. Rockets 34, 6 (1997)

    Google Scholar 

  • A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s trojan asteroids in the early solar system. Nature 435, 462–465 (2005)

    ADS  Google Scholar 

  • A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, R. Gomes, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    ADS  Google Scholar 

  • O. Mousis, L.N. Fletcher, J.-P. Lebreton, P. Wurz, T. Cavalié, A. Coustenis, R. Courtin, D. Gautier, R. Helled, P.G.J. Irwin, A.D. Morse, N. Nettelmann, B. Marty, P. Rousselot, O. Venot, D.H. Atkinson, J.H. Waite, K.R. Reh, A.A. Simon, S. Atreya, N. André, M. Blanc, I.A. Daglis, G. Fischer, W.D. Geppert, T. Guillot, M.M. Hedman, R. Hueso, E. Lellouch, J.I. Lunine, C.D. Murray, J. O’Donoghue, M. Rengel, A. Sánchez-Lavega, F.-X. Schmider, A. Spiga, T. Spilker, J.-M. Petit, M.S. Tiscareno, M. Ali-Dib, K. Altwegg, S.J. Bolton, A. Bouquet, C. Briois, T. Fouchet, S. Guerlet, T. Kostiuk, D. Lebleu, R. Moreno, G.S. Orton, J. Poncy, Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014)

    ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, T. Spilker, E. Venkatapathy, J. Poncy, R. Frampton, A. Coustenis, K. Reh, J.-P. Lebreton, L. Fletcher, R. Hueso, M. Amato, T. Colaprete, F. Ferri, D. Stam, P. Wurz, S. Atreya, S. Aslam, D. Banfield, S. Calcutt, G. Fischer, A. Holland, C. Keller, E. Kessler, M. Leese, P. Levacher, A. Morse, O. Munoz, J.-B. Renard, S. Sheridan, F.-X. Schmider, F. Snik, J.H. Waite, M. Bird, T. Cavalié, M. Deleuil, J. Fortney, D. Gautier, T. Guillot, J.I. Lunine, B. Marty, C. Nixon, G.S. Orton, A. Sánchez-Lavega, The Hera Saturn entry probe mission. Planet. Space Sci. 130, 80–103 (2016)

    ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, T. Cavalié, L.N. Fletcher, M.J. Amato, S. Aslam, F. Ferri, J.-B. Renard, T. Spilker, E. Venkatapathy, P. Wurz, K. Aplin, A. Coustenis, M. Deleuil, M. Dobrijevic, T. Fouchet, T. Guillot, P. Hartogh, T. Hewagama, M.D. Hofstadter, V.R. Hueso, J.-P. Lebreton, E. Lellouch, J. Moses, G.S. Orton, J.C. Pearl, A. Sánchez-Lavega, A. Simon, O. Venot, J.H. Waite, R.K. Achterberg, S. Atreya, F. Billebaud, M. Blanc, F. Borget, B. Brugger, S. Charnoz, T. Chiavassa, V. Cottini, L. d’Hendecourt, G. Danger, T. Encrenaz, N.J.P. Gorius, L. Jorda, B. Marty, R. Moreno, A. Morse, C. Nixon, K. Reh, T. Ronnet, F.-X. Schmider, S. Sheridan, C. Sotin, P. Vernazza, G.L. Villanueva, Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12–40 (2018)

    ADS  Google Scholar 

  • O. Mousis, T. Ronnet, J.I. Lunine, Jupiter’s formation in the vicinity of the amorphous ice snowline. Astrophys. J. 875, 9 (2019)

    ADS  Google Scholar 

  • O. Mousis, A. Aguichine, D.H. Atkinson, S.K. Atreya, T. Cavalié, J.I. Lunine, K.E. Mandt, T. Ronnet, Key atmospheric signatures for identifying the source reservoirs of volatiles in Uranus and Neptune. Space Sci. Rev. 216, 77 (2020, this issue)

    ADS  Google Scholar 

  • D. Nesvorný, Young solar System’s fifth giant planet? Astrophys. J. 742, L22 (2011)

    ADS  Google Scholar 

  • H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Carignan, D.M. Hunten, T.C. Owen, Galileo probe mass spectrometer experiment. Space Sci. Rev. 60, 111–142 (1992)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, The Galileo probe mass spectrometer: composition of Jupiter’s atmosphere. Science 272, 846–849 (1996)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, S.H. Way, The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 22831–22846 (1998)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, K. Biemann, B. Block, G.R. Carignan, T.M. Donahue, R.L. Frost, D. Gautier, J.A. Haberman, D. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, K. Mauersberger, T.C. Owen, F. Faulin, J.E. Richards, S.H. Way, The gas chromatograph mass spectrometer for the Huygens probe. Space Sci. Rev. 104, 551–590 (2002)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way, The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005)

    ADS  Google Scholar 

  • G.S. Orton, B.M. Fisher, K.H. Baines, S.T. Stewart, A.J. Friedson, J.L. Ortiz, M. Marinova, M. Ressler, A. Dayal, W. Hoffmann, J. Hora, S. Hinkley, V. Krishnan, M. Masanovic, J. Tesic, A. Tziolas, K.C. Parija, Characteristics of the Galileo probe entry site from Earth-based remote sensing observations. J. Geophys. Res. 103, 22791–22814 (1998)

    ADS  Google Scholar 

  • G.S. Orton, L.N. Fletcher, J.I. Moses, A.K. Mainzer, D. Hines, H.B. Hammel, F.J. Martin-Torres, M. Burgdorf, C. Merlet, M.R. Line, Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus 243, 494–513 (2014a)

    ADS  Google Scholar 

  • G.S. Orton, J.I. Moses, L.N. Fletcher, A.K. Mainzer, D. Hines, H.B. Hammel, J. Martin-Torres, M. Burgdorf, C. Merlet, M.R. Line, Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 243, 471–493 (2014b)

    ADS  Google Scholar 

  • T. Owen, P. Mahaffy, H.B. Niemann, S. Atreya, T. Donahue, A. Bar-Nun, I. de Pater, A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999)

    ADS  Google Scholar 

  • J.C. Pearl, B.J. Conrath, R.A. Hanel, J.A. Pirraglia, The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data. Icarus 84, 12–28 (1990)

    ADS  Google Scholar 

  • R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2 (1991)

    ADS  Google Scholar 

  • G. Quilligan, S. Aslam, B. Lakew, J. DuMonthier, R. Katz, I. Kleyner, A 0.18 μm CMOS thermopile readout ASIC immune to 50 Mrad total ionizing dose (Si) and single event latchup to 174 MeV-cm2/mg, in International Workshop on Instrumentation for Planetary Missions (IPM-2014), November 2014 Greenbelt, MD 20771 (2014)

    Google Scholar 

  • G. Quilligan, J. DuMonthier, S. Aslam, B. Lakew, I. Kleyner, R. Katz, Thermal radiometer signal processing using radiation hard CMOS application specific integrated circuits for use in harsh planetary environments, in European Planetary Science Congress 2015, 27 September–2 October, 2015, Nantes, France (2015)

    Google Scholar 

  • B. Ragent, T. Wong, J.E. Blamont, A.J. Eskovitz, L.N. Harnett, A. Pallai, Pioneer Venus sounder and small probes nephelometer instrument. IEEE Trans. Geosci. Remote Sens. GE-18, 1 (1980)

    Google Scholar 

  • B. Ragent, C.A. Privette, P. Avrin, J.G. Waring, C.E. Carlston, T.C.D. Knight, J.P. Martin, Galileo probe nephelometer experiment. Space Sci. Rev. 60, 179–201 (1992)

    ADS  Google Scholar 

  • B. Ragent, D.S. Colburn, K.A. Rages, T.C.D. Knight, P. Avrin, G.S. Orton, P.A. Yanamandra-Fisher, G.W. Grams, The clouds of Jupiter: results of the Galileo Jupiter mission probe nephelometer experiment. J. Geophys. Res. 103, 22891–22910 (1998)

    ADS  Google Scholar 

  • J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument. Appl. Opt. 41, 609–618 (2002)

    ADS  Google Scholar 

  • J.-B. Renard, C. Thaury, J.-L. Mineau, B. Gaubicher, Small-angle light scattering by airborne particulates: environment-S.A. continuous particulate monitor. Meas. Sci. Technol. 21, 931–939 (2010). https://doi.org/10.1088/0957-0233/21/8/085901

    Article  Google Scholar 

  • J. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, M. Jeannot, B. Couté, R. Akiki, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, P. Zieger, M. Salter, T. Roberts, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, D. Daugeron, LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: principle of measurements and instrument evaluation. Atmos. Meas. Tech. 9, 1721–1742 (2016a)

    Google Scholar 

  • J. Renard, F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, M. Jeannot, B. Couté, R. Akiki, N. Verdier, M. Mallet, F. Gensdarmes, P. Charpentier, S. Mesmin, V. Duverger, J.-C. Dupont, T. Elias, V. Crenn, J. Sciare, P. Zieger, M. Salter, T. Roberts, J. Giacomoni, M. Gobbi, E. Hamonou, H. Olafsson, P. Dagsson-Waldhauserova, C. Camy-Peyret, C. Mazel, T. Décamps, M. Piringer, J. Surcin, D. Daugeron, LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: first results from balloon and unmanned aerial vehicle flights. Atmos. Meas. Tech. 9, 3673–3686 (2016b)

    Google Scholar 

  • J. Renard, O. Mousis, P. Rannou, A.-C. Levasseurregourd, G. Berthet, J.-M. Geffrin, E. Hadamcik, N. Verdier, A.-L. Millet, D. Daugeron, Counting and scattering function measurements to determine the physical properties of the aerosols in the ice giants atmospheres (2020, this issue)

  • A. Seiff, T.C.D. Knight, The Galileo probe atmosphere structure instrument. Space Sci. Rev. 60, 203–232 (1992)

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, R.E. Young, R.C. Blanchard, J.T. Findlay, G.M. Kelly, S.C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations – results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933 (1980)

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 103, 22857–22890 (1998)

    ADS  Google Scholar 

  • V. Shcherbakov, J.-F. Gayet, B. Baker, P. Lawson, Light scattering by single natural ice crystals. J. Atmos. Sci. 63, 1513–1525 (2006)

    ADS  Google Scholar 

  • J. Simcic, Personal Communication

  • J. Simcic, D. Nikolic, A. Belousov, D. Atkinson, S. Madzunkov, Quadrupole ion trap mass spectrometer for ice giant atmospheres exploration (2020, this issue)

  • M.D. Smith, P.J. Gierasch, Convection in the outer planet atmospheres including ortho-para hydrogen conversion. Icarus 116, 159–179 (1995)

    ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, R. Beebe, D. Bliss, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, S.A. Collins, A.F. Cook 2nd, S.K. Croft, J.N. Cuzzi, G.E. Danielson, M.E. Davies, T.E. Dowling, D. Godfrey, C.J. Hansen, C. Harris, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, R.J. Krauss, H. Masursky, D. Morrison, T. Owen, J.B. Plescia, J.B. Pollack, C.C. Porco, K. Rages, C. Sagan, E.M. Shoemaker, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synnott, R.J. Terrile, P. Thomas, W.R. Thompson, J. Veverka, Voyager 2 in the Uranian system – imaging science results. Science 233, 43–64 (1986)

    ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune: imaging science results. Science 246, 1422–1449 (1989)

    ADS  Google Scholar 

  • T.R. Spilker, D.H. Atkinson, S.K. Atreya, A. Colaprete, L.J. Spilker, Significant science from a Saturn atmospheric entry probe mission, in AGU Fall Meeting Abstracts (2011)

    Google Scholar 

  • T.R. Spilker, S.K. Atreya, D.H. Atkinson, A. Colaprete, A. Coustenis, Science investigation options with a NASA New Frontiers Program Saturn entry probe mission, in European Planetary Science Congress EPSC2012-300 (2012)

    Google Scholar 

  • L.A. Sromovsky, F.A. Best, H.E. Revercomb, J. Hayden, Galileo net flux radiometer experiment. Space Sci. Rev. 60, 233–262 (1992)

    ADS  Google Scholar 

  • L.A. Sromovsky, S.S. Limaye, P.M. Fry, Dynamics of Neptune’s major cloud features. Icarus 105, 110–141 (1993)

    ADS  Google Scholar 

  • L.A. Sromovsky, A.D. Collard, P.M. Fry, G.S. Orton, M.T. Lemmon, M.G. Tomasko, R.S. Freedman, Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere. J. Geophys. Res. 103, 22929–22977 (1998)

    ADS  Google Scholar 

  • L.A. Sromovsky, E. Karkoschka, P.M. Fry, H.B. Hammel, I. de Pater, K. Rages, Methane depletion in both polar regions of Uranus inferred from HST/STIS and Keck/NIRC2 observations. Icarus 238, 137–155 (2014)

    ADS  Google Scholar 

  • E.C. Stone, E.D. Miner, The Voyager 2 encounter with the Neptunian system. Science 246, 1417–1421 (1989)

    ADS  Google Scholar 

  • C. Szopa, Mass Spectrometry in the history of the solar system exploration. Journees Francaises de Spectometrie de Masse – Orleans (Fr.) (2012). https://jfsm2012.sciencesconf.org/conference/jfsm2012/pages/C10.pdf

  • M.G. Tomasko, D. Buchhauser, M. Bushroe, L.E. Dafoe, L.R. Doose, A. Eibl, c. Fellows, E. McFarlane, G.M. Prout, M.J. Pringle, B. Rizk, C. See, P.H. Smith, K. Tsetsenekos, The Descent Imager/Spectral Radiometer (DISR) experiment on the Huygens entry probe of Titan. Space Sci. Rev. 104(104), 469–551 (2002)

    ADS  Google Scholar 

  • D. Turrini, R. Politi, R. Peron, D. Grassi, C. Plainaki, M. Barbieri, D.M. Lucchesi, G. Magni, F. Altieri, V. Cottini, N. Gorius, P. Gaulme, F.-X. Schmider, A. Adriani, G. Piccioni, The comparative exploration of the ice giant planets with twin spacecraft: unveiling the history of our Solar System. Planet. Space Sci. 104, 93–107 (2014)

    ADS  Google Scholar 

  • G.L. Tyler, V.R. Eshleman, D.P. Hinson, E.A. Marouf, R.A. Simpson, D.N. Sweetnam, J.D. Anderson, J.K. Campbell, G.S. Levy, G.F. Lindal, Voyager 2 radio science observations of the Uranian system atmosphere, rings, and satellites. Science 233, 79–84 (1986)

    ADS  Google Scholar 

  • E. Venkatapathy, D. Ellerby, D. Prabhu, E. Martinez, Saturn atmospheric structure investigation: an assessment of and challenges and recommendations for extending the Galileo approach to future probe missions, in International Workshop on Instrumentation for Planetary Missions 1683 (2012), p. 1129

    Google Scholar 

  • C. Verhaege, V. Shcherbakov, P. Personne, Retrieval of complex refractive index and size distribution of spherical particles from Dual-Polarization Polar Nephelometer data. J. Quant. Spectrosc. Radiat. Transf. 110, 1690–1697 (2009)

    ADS  Google Scholar 

  • C. Visscher, B. Fegley Jr., Chemical constraints on the water and total oxygen abundances in the deep atmosphere of Saturn. Astrophys. J. 623, 1221–1227 (2005)

    ADS  Google Scholar 

  • N.S. Vojvodich, R.J. Drean, R.W. Schaupp, D.L. Farless, Galileo atmospheric entry probe mission description, in AIAA-83-0100, AIAA 21st Aerospace Sciences Meeting, 10–13 January, 1983, Reno, Nevada (1983)

    Google Scholar 

  • H. Volten, O. Munoz, J.W. Hovenier, L.B.F.M. Waters, An update of the Amsterdam light scattering database. J. Quant. Spectrosc. Radiat. Transf. 100, 437–443 (2006)

    ADS  Google Scholar 

  • U. von Zahn, D.M. Hunten, The Jupiter helium interferometer experiment on the Galileo entry probe. Space Sci. Rev. 60, 263–281 (1992)

    ADS  Google Scholar 

  • U. von Zahn, D.M. Hunten, G. Lehmacher, Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J. Geophys. Res. 103, 22815–22830 (1998)

    ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, Determining the local abundance of Martian methane and its 13C/12C and D/H isotopic ratios for comparison with related gas and soil analysis on the 2011 Mars Science Laboratory (MSL) mission. Planet. Space Sci. 59, 271–283 (2011)

    ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, K.A. Farley (the MSL Science Team), Low upper limit to methane abundance on Mars. Science 342, 355–357 (2013)

    ADS  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171, 153–170 (2004)

    ADS  Google Scholar 

  • R. Woo, J.W. Armstrong, W.B. Kendall, Measurements of turbulence in the Venus atmosphere deduced from pioneer Venus multiprobe radio scintillations. Science 205(4401), 87–89 (1979). https://doi.org/10.1126/science.205.4401.87

    Article  ADS  Google Scholar 

  • R.E. Young, The Galileo probe mission to Jupiter: science overview. J. Geophys. Res. 103, 22775–22790 (1998)

    ADS  Google Scholar 

  • R.E. Young, M.A. Smith, C.K. Sobeck, Galileo probe: in situ observations of Jupiter’s atmosphere. Science 272, 837–838 (1996)

    ADS  Google Scholar 

  • J.C. Zarnecki, M. Banaszkiewicz, M. Bannister, W.V. Boynton, P. Challenor, B. Clark, P.M. Daniell, J. Delderfield, M.A. English, M. Fulchignoni, J.R.C. Garry, J.E. Geake, S.F. Green, B. Hathi, S. Jaroslawski, M.R. Leese, R.D. Lorenz, J.A.M. McDonnell, N. Merryweather-Clarke, C.S. Mill, R.J. Miller, G. Newton, D.J. Parker, L.H. Svedhem, R.F. Turner, M.J. Wright, The Huygens surface science package, in Huygens: Science, Payload and Mission. ESA Special Publication, vol. SP-1177, ed. by A. Wilson (1997), pp. 177–195

    Google Scholar 

  • J.C. Zarnecki, M.R. Leese, J.R.C. Garry, N. Ghafoor, B. Hathi, Huygens’ surface science package. Space Sci. Rev. 104(104), 593–611 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D004). The authors would like to thank two anonymous reviewers for very insightful comments and suggestions that significantly improved the readability, content, and accuracy of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Atkinson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Situ Exploration of the Ice Giants: Science and Technology

Edited by Olivier J. Mousis and David H. Atkinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, D.H., Mousis, O., Spilker, T.R. et al. Reference Model Payload for Ice Giant Entry Probe Missions. Space Sci Rev 216, 120 (2020). https://doi.org/10.1007/s11214-020-00738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00738-y

Keywords

Navigation