Skip to main content
Log in

Predicting the Amplitude of Solar Cycle 25 Using the Value 39 Months Before the Solar Minimum

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Yoshida and Yamagishi (Ann. Geophys. 28, 417, 2010) found that the rate of decrease in the smoothed monthly mean sunspot number [\(R_{\mathrm{I}}\)] over the final three years of a solar cycle or \(R_{\mathrm{I}}\) itself at three years before the solar minimum [\(R_{ \mathrm{min}}\)] can be used as a precursor for the ensuing maximum amplitude [\(R_{\mathrm{m}}\)] if the time of \(R_{\mathrm{min}}\) can be predicted in advance. The \(R_{\mathrm{I}}\) series of the new version is employed to carefully analyze the decrease rate [\(\beta \)] at different months [\(m\)] before \(R_{\mathrm{min}}\) and over different time intervals [\(\Delta m\)] in this study. It is found that \(R_{\mathrm{m}}(n)\) of Solar Cycle \(n\) is best correlated (\(r=0.831\)) with the preceding \(\beta (n-1, m, \Delta m)\) over the final \(\Delta m=m=39\) months. In addition, \(R_{\mathrm{m}}\) is found to be best correlated (\(r=0.834\)) with the \(R_{\mathrm{I}}\) value 39 months before the preceding minimum. For the even- (odd-)numbered cycles, \(R_{\mathrm{m}}\) is best correlated, \(r=0.956\) (0.747), with the rate of decrease over \(\Delta m= 38 (43)\) months interval from \(m=39(47)\) months before the solar minimum, and \(R_{\mathrm{m}}\) is best correlated, \(r=0.964(0.739)\), with the \(R_{\mathrm{I}}\)-value 39 (46) months before the solar minimum. Based on this method and the inferred end time of Solar Cycle 24, the amplitude of Solar Cycle 25 is predicted to be \(R_{\mathrm{m}}=130.0\pm 31.9\), occurring around October 2024 \(\pm 13\) (months).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI.

    Article  ADS  Google Scholar 

  • Brown, G.M., Williams, W.R.: 1969, Some properties of the day-to-day variability of Sq(H). Planet. Space Sci. 17, 455. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801. DOI.

    Article  ADS  Google Scholar 

  • Cameron, R., Schüssler, M.: 2008, A robust correlation between growth rate and amplitude of solar cycles: Consequences for prediction methods. Astrophys. J. 685, 1291. DOI.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting Solar Cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E., Lefèvre, L., Svalgaard, L., Vaquero, J., Leibacher, J.: 2016, Preface to topical issue: Recalibration of the sunspot number. Solar Phys. 291, 2479. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of Solar Cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011a, The relationship between prediction accuracy and correlation coefficient. Solar Phys. 270, 407. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011b, The shape of solar cycle described by a modified Gaussian function. Solar Phys. 273, 231. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2020, Predicting the shape of Solar Cycle 25 using a similar-cycle method. Solar Phys. 295, 134. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2010, Does a low solar cycle minimum hint at a weak upcoming cycle? Res. Astron. Astrophys. 10, 950. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2011, The prediction method of similar cycles. Res. Astron. Astrophys. 11, 1482. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2012, Predicting the solar maximum with the rising rate. Sci. China Ser. G, Phys. Mech. Astron. 55, 365. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Li, R., Wang, H.N.: 2009, The predictive power of Ohl’s precursor method. Astron. J. 138, 1998. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L., Wang, H.N., Zhang, L.Y.: 2008, A running average method for predicting the size and length of a solar cycle. Chin. J. Astron. Astrophys. 8, 477. DOI.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. Zh. 25, 18.

    Google Scholar 

  • Hale, G.E.: 1924, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105. DOI.

    Article  ADS  Google Scholar 

  • Han, Y.B., Yin, Z.Q.: 2019, A decline phase modeling for the prediction of Solar Cycle 25. Solar Phys. 294, 107. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: Sunspot cycle characteristics. Solar Phys. 211, 357. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming Solar Cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI.

    Article  ADS  Google Scholar 

  • Moradi, H., Baldner, C., Birch, A.C., Braun, D.C., Cameron, R.H., Duvall, T.L., Gizon, L., Haber, D., Hanasoge, S.M., Hindman, B.W., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, P., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H., Spruit, H.C., Strassmeier, K.G., Thompson, M.J., Zharkov, S.: 2010, Modeling the subsurface structure of sunspots. Solar Phys. 267, 1. DOI.

    Article  ADS  Google Scholar 

  • Nordemann, D.J.R., Trivedi, N.B.: 1992, Sunspot number time series - exponential fitting and periodicites. Solar Phys. 142, 411. DOI.

    Article  ADS  Google Scholar 

  • Ohl, A.I., Ohl, G.I.: 1979, A new method of very long-term prediction of solar activity. In: Donnelly, R.F. (ed.) NASA Marshall Space Flight Center Solar-Terr. Pred. Proc. 2, 258. ADS.

    Google Scholar 

  • Pesnell, W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of Solar Cycle 25. Solar Phys. 293, 112. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 2005, Fair space weather for Solar Cycle 24. Geophys. Res. Lett. 32, L21106. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K., Myers, D.J., Sofia, S.: 1996, Solar activity forecast for Solar Cycle 23. Geophys. Res. Lett. 23, 605. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Scherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Using dynamo theory to predict the sunspot number during Solar Cycle 21. Geophys. Res. Lett. 5, 411. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1843, Die Sonne. Astron. Nachr. 20, 283. DOI.

    Article  ADS  Google Scholar 

  • Singh, P.R., Tiwari, C.M., Saxena, A.K., Agrawal, S.L.: 2019, Quasi-biennial periodicities and heliospheric modulation of geomagnetic activity during solar cycles 22. Phys. Scr. 94, 105005. DOI.

    Article  ADS  Google Scholar 

  • Stewart, J.Q., Panofsky, H.A.A.: 1938, The mathematical characteristics of sunspot variations. Astrophys. J. 88, 385. DOI.

    Article  ADS  MATH  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A., Hanslmeier, A.: 2003, Does solar flare activity lag behind sunspot activity? Solar Phys. 215, 111. DOI.

    Article  ADS  Google Scholar 

  • Thompson, R.J.: 1988, The rise of solar cycle number 22. Solar Phys. 117, 279. DOI.

    Article  ADS  Google Scholar 

  • Thompson, R.J.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys. 148, 383. DOI.

    Article  ADS  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: The modern minimum. Geophys. Res. Lett. 45, 8091. DOI.

    Article  ADS  Google Scholar 

  • Vondrak, J.: 1977, Problem of smoothing observational data II. Bull. Astron. Inst. Czechoslov. 28, 84. ADS.

    ADS  Google Scholar 

  • Waldmeier, M.: 1939, Über die Struktur der Sonnenflecken. Astron. Mitt. Zür. 14, 439. ADS.

    ADS  Google Scholar 

  • Wilson, R.M.: 1990, On the maximum rate of change in sunspot number growth and the size of the sunspot cycle. Solar Phys. 127, 199. DOI.

    Article  ADS  Google Scholar 

  • Xu, T., Wu, J., Wu, Z.-S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337. DOI.

    Article  ADS  Google Scholar 

  • Yin, Z.Q., Han, Y.B.: 2018, An improved prediction of sunspot maximum by Vondrak smoothing method. Astron. Nachr. 339, 30. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A.: 2014, Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A., Sayre, R.: 2012, Tendency of discreteness of the solar amplitude and intercycle relatedness. Adv. Astron. 2012, 519852. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A., Yamagishi, H.: 2010, Predicting amplitude of Solar Cycle 24 based on a new precursor method. Ann. Geophys. 28, 417. DOI.

    Article  ADS  Google Scholar 

  • Yule, G.U.: 1927, On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Phil. Trans. Roy. Soc. London 226, 267. DOI.

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewer for valuable suggestions to improve this manuscript. This work is supported by the National Science Foundation of China (NSFC) through grants 11603040 and 11973058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanle Du.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Predicting the Amplitude of Solar Cycle 25 Using the Value 39 Months Before the Solar Minimum. Sol Phys 295, 147 (2020). https://doi.org/10.1007/s11207-020-01720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01720-1

Keywords

Navigation