Skip to main content
Log in

Catalytic asymmetric dipolar cycloadditions of indolyl delocalized metal-allyl species for the enantioselective synthesis of cyclopenta [b]indoles and pyrrolo[1,2-a]indoles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of novel synthons and efficient methods to synthesize chiral polycyclic indoles has been a hot topic in organic synthesis and medicinal chemistry owing to their broad applications in medicines, pesticides, and other functional molecules. Here, we disclosed novel indolyl substituted metal-allyl zwitterionic intermediates through the decarboxylation of conveniently available vinyl indoloxazolidones, which could be regarded as two types of dipolar species through the anionic delocalization. The palladium-π-allyl species tended to serve as an all-carbon 1,3-dipole in the asymmetric [3+2] cycloaddition with electron-deficient alkenes, which furnished polysubstituted cyclopenta[b]indoles with high regio- and stereoselectivities. Meanwhile, the iridium-π-allyl species was recognized as an aza-1,3-dipole in asymmetric [3+2] cycloaddition with in situ generated C1 ammonium enolates, affording pyrrolo[1,2-a]indoles with high diastereo- and enantioselectivities. In addition, the dipolar cycloadditions could be easily scaled-up and several synthetic transformations of the cycloadducts were demonstrated for the rapid synthesis of diverse chiral polycyclic indoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen FE, Huang J. Chem Rev, 2005, 105: 4671–4706

    CAS  PubMed  Google Scholar 

  2. Pritchett BP, Stoltz BM. Nat Prod Rep, 2018, 35: 559–574

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu Z, Wang Q, Zhu J. Chem Soc Rev, 2018, 47: 7882–7898

    CAS  PubMed  Google Scholar 

  4. Wang Y, Lan J. Sci China Chem, 2018, 61: 200–205

    CAS  Google Scholar 

  5. Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J Am Chem Soc, 2008, 130: 17938–17954

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM. Org Lett, 2009, 11: 329–332

    CAS  PubMed  Google Scholar 

  7. Scarpi D, Faggi C, Occhiato EG. J Nat Prod, 2017, 80: 2384–2388

    CAS  PubMed  Google Scholar 

  8. Raja S, Nakajima M, Rueping M. Angew Chem Int Ed, 2015, 54: 2762–2765

    CAS  Google Scholar 

  9. Cheng HG, Lu LQ, Wang T, Yang QQ, Liu XP, Li Y, Deng QH, Chen JR, Xiao WJ. Angew Chem Int Ed, 2013, 52: 3250–3254

    CAS  Google Scholar 

  10. Galván A, González-Pérez AB, Álvarez R, de Lera AR, Fañanás FJ, Rodríguez F. Angew Chem Int Ed, 2016, 55: 3428–3432

    Google Scholar 

  11. For selected reviews, see: (a) Trost BM, Crawley ML. Chem Rev, 2003, 103: 2921–2944

    CAS  PubMed  Google Scholar 

  12. Qu J, Helmchen G. Acc Chem Res, 2017, 50: 2539–2555

    CAS  PubMed  Google Scholar 

  13. Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Chem Rev, 2019, 119: 1855–1969

    CAS  PubMed  Google Scholar 

  14. For selected reviews, see: (a) Weaver JD, Recio Iii A, Grenning AJ, Tunge JA. Chem Rev, 2011, 111: 1846–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen BDW, Lakeland CP, Harrity JPA. Chem Eur J, 2017, 23: 13830–13857

    CAS  PubMed  Google Scholar 

  16. De N, Yoo EJ. ACS Catal, 2018, 8: 48–58

    CAS  Google Scholar 

  17. Shintani R, Murakami M, Hayashi T. J Am Chem Soc, 2007, 129: 12356–12357

    CAS  PubMed  Google Scholar 

  18. For selected examples, see: (a) Shintani R, Park S, Shirozu F, Murakami M, Hayashi T. J Am Chem Soc, 2008, 130: 16174–16175

    CAS  PubMed  Google Scholar 

  19. Shintani R, Tsuji T, Park S, Hayashi T. J Am Chem Soc, 2010, 132: 7508–7513

    CAS  PubMed  Google Scholar 

  20. Mao B, Liu H, Yan Z, Xu Y, Xu J, Wang W, Wu Y, Guo H. Angew Chem Int Ed, 2020, 59: 11316–11320

    CAS  Google Scholar 

  21. Wang C, Tunge JA. J Am Chem Soc, 2008, 130: 8118–8119

    CAS  PubMed  PubMed Central  Google Scholar 

  22. For selected examples, see: (a) Li TR, Tan F, Lu LQ, Wei Y, Wang YN, Liu YY, Yang QQ, Chen JR, Shi DQ, Xiao WJ. Nat Commun, 2014, 5: 5500

  23. Wei Y, Lu LQ, Li TR, Feng B, Wang Q, Xiao WJ, Alper H. Angew Chem Int Ed, 2016, 55: 2200–2204

    CAS  Google Scholar 

  24. Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. J Am Chem Soc, 2016, 138: 7840–7843

    CAS  PubMed  Google Scholar 

  25. Mei GJ, Bian CY, Li GH, Xu SL, Zheng WQ, Shi F. Org Lett, 2017, 19: 3219–3222

    CAS  PubMed  Google Scholar 

  26. Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Angew Chem Int Ed, 2019, 58: 11013–11017

    CAS  Google Scholar 

  27. Knight JG, Ainge SW, Harm AM, Harwood SJ, Maughan HI, Armour DR, Hollinshead DM, Jaxa-Chamiec AA. J Am Chem Soc, 2000, 122: 2944–2945

    CAS  Google Scholar 

  28. Khan A, Yang L, Xu J, Jin LY, Zhang YJ. Angew Chem Int Ed, 2014, 53: 11257–11260

    CAS  Google Scholar 

  29. Ohmatsu K, Imagawa N, Ooi T. Nat Chem, 2014, 6: 47–51

    CAS  PubMed  Google Scholar 

  30. Ohmatsu K, Kawai S, Imagawa N, Ooi T. ACS Catal, 2014, 4: 4304–4306

    CAS  Google Scholar 

  31. For selected examples, see: (a) Rong ZQ, Yang LC, Liu S, Yu Z, Wang YN, Tan ZY, Huang RZ, Lan Y, Zhao Y. J Am Chem Soc, 2017, 139: 15304–15307

    CAS  PubMed  Google Scholar 

  32. Yang LC, Rong ZQ, Wang YN, Tan ZY, Wang M, Zhao Y. Angew Chem Int Ed, 2017, 56: 2927–2931

    CAS  Google Scholar 

  33. Wei Y, Liu S, Li MM, Li Y, Lan Y, Lu LQ, Xiao WJ. J Am Chem Soc, 2019, 141: 133–137

    CAS  PubMed  Google Scholar 

  34. Gao X, Xia M, Yuan C, Zhou L, Sun W, Li C, Wu B, Zhu D, Zhang C, Zheng B, Wang D, Guo H. ACS Catal, 2019, 9: 1645–1654

    CAS  Google Scholar 

  35. Zeng R, Li JL, Zhang X, Liu YQ, Jia ZQ, Leng HJ, Huang QW, Liu Y, Li QZ. ACS Catal, 2019, 9: 8256–8262

    CAS  Google Scholar 

  36. Zhang X, Li X, Li JL, Wang QW, Zou WL, Liu YQ, Jia ZQ, Peng F, Han B. Chem Sci, 2020, 11: 2888–2894

    CAS  Google Scholar 

  37. Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat Catal, 2020, 3: 48–54

    CAS  Google Scholar 

  38. Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Angew Chem Int Ed, 2020, 59: 8187–8194

    CAS  Google Scholar 

  39. Yang WL, Li CY, Qin WJ, Tang FF, Yu X, Deng WP. ACS Catal, 2016, 6: 5685–5690

    CAS  Google Scholar 

  40. Zhang J, Ni T, Yang WL, Deng WP. Org Lett, 2020, 22: 4547–4552

    CAS  PubMed  Google Scholar 

  41. Zheng X, Sun H, Yang WL, Deng WP. Sci China Chem, 2020, 63: 911–916

    CAS  Google Scholar 

  42. During the preparation of our manuscript, Shi and co-workers reported Pd-catalyzed [3+2] cycloaddition and allylic amination of vinyl ox-azoloindol-3-ones in high efficiency. According to their report, π-allyl-Pd zwitterion intermediate exclusively served as a nitrogen-carbon-carbon building block in the [3+2] cycloaddition and only 63% yield and 20% ee for one single example was obtained in the asymmetric version, see: Hang QQ, Liu SJ, Yu L, Sun TT, Zhang YC, Mei GJ, Shi F. Chin J Chem, 2020, 38: 1612-1618. To be noticed, the indolyl metal-π-allyl zwitterion intermediate was designed as both all-carbon and aza-1,3-dipoles through anionic delocalization in our study and excellent enantioselectivities were obtained

  43. Morrill LC, Smith AD. Chem Soc Rev, 2014, 43: 6214–6226

    CAS  PubMed  Google Scholar 

  44. Jiang X, Beiger JJ, Hartwig JF. J Am Chem Soc, 2017, 139: 87–90

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901072), the China Postdoctoral Science Foundation (2019T120310) and Shanghai Sailing Program (18YF140560). Prof. Ying-Chun Chen of Sichuan University is acknowledged for helpful discussions. The authors thank the Research Center of Analysis and Test of East China University of Science and Technology for the assistance with the HRMS and NMR analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu-Lin Yang or Wei-Ping Deng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

11426_2020_9854_MOESM1_ESM.pdf

Catalytic asymmetric dipolar cycloadditions of indolyl delocalized metal-allyl species for the enantioselective synthesis of cyclopenta [b]indoles and pyrrolo[1,2-a]indoles

Supplementary material, approximately 228 KB.

Supplementary material, approximately 228 KB.

Supplementary material, approximately 228 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Yang, WL., Ni, T. et al. Catalytic asymmetric dipolar cycloadditions of indolyl delocalized metal-allyl species for the enantioselective synthesis of cyclopenta [b]indoles and pyrrolo[1,2-a]indoles. Sci. China Chem. 64, 34–40 (2021). https://doi.org/10.1007/s11426-020-9854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9854-3

keywords

Navigation