Skip to main content
Log in

Cost-efficiency measurement for two-stage DEA network using game approach: an application to electrical network in Iran

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This study proposes a two-stage game–data envelopment analysis (DEA) approach for cost-efficiency (CE) measurement using centralized and Stackelberg game models. Each decision-making unit (DMU) is proposed to make up two-stage network structures (or processes), where all the first-stage outputs are the only second-stage inputs. The main contribution of this study is the development of cooperative and non-cooperative models for CE measurement and implies a unique CE decomposition. We apply centralized and Stackelberg approaches for cooperative and non-cooperative assumption between two stages. We proposed a simplified version of the two-stage DEA network CE model. Applying the proposed model for CE calculation reduces both the number of constraints and variables, resulting in a sharp reduction in computational requirements. The applicability of the presented model is demonstrated in the context of studying the output of the electrical network in Iran. The results of the case study show that in a two-stage network, the proposed DEA model can provide accurate estimates of CE. This paper aids the two-stage network structures to control the costs by weak DMUs management. To the authors’ knowledge, this paper is the first research on the CE in a network by the DEA approach so that the relationships between the internal stages of the network are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kao C 2014 Network data envelopment analysis: a review. Eur. J. Oper. Res. 239(1): 1–16

    Article  MathSciNet  Google Scholar 

  2. Farrell M J 1957 The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 120: 253–281

    Article  Google Scholar 

  3. Cook W D, Liang L and Zhu J 2010 Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (6): 423–430

    Article  Google Scholar 

  4. Sexton T R and Lewis H F 2003 Two-stage DEA: an application to major league baseball. J. Prod. Anal. 19: 227–249

    Article  Google Scholar 

  5. Seiford L M and Zhu J 1999 Infeasibility of super-efficiency data envelopment analysis models. Inf. Syst. Oper. Res. 37(2): 174–186

    Google Scholar 

  6. Zhu J 2000 Multi-factor performance measure model with an application to fortune 500 companies. Eur. J. Oper. Res. 123(1): 105–124

    Article  Google Scholar 

  7. Khalili-Damghani K, Taghavi-Fard M and Abtahi A R 2012 A fuzzy two-stage DEA approach for performance measurement: real case of agility performance in dairy supply chains. Int. J. Appl. Decis. Sci. 5: 293–318

    Google Scholar 

  8. Liang L, Yang F, Cook W D and Zhu J 2006 DEA models for supply chain efficiency evaluation. Ann. Oper. Res. 145: 35–49

    Article  MathSciNet  Google Scholar 

  9. Guo J, Liu J and Qiu L 2006 Research on Supply Chain Performance Evaluation Based on DEA/AHP model. In: Proceedings of the Asia–Pacific Conference on Services Computing, pp. 609–612

  10. Simsek B and Tüysüz F 2018 An application of network data envelopment analysis with fuzzy data for the performance evaluation in cargo sector. J. Enterp. Inf. Manag. 31(1)

  11. Chaluvadi S, Raut R and Gardas B B 2018 Measuring the performance efficiency of banks in a developing economy. Benchmark. Int. J. 25(2): 575–606

    Article  Google Scholar 

  12. Azadeh A, Zarrin M and Salehi N 2016 Supplier selection in closed loop supply chain by an integrated simulation-Taguchi-DEA approach. J. Enterp. Inf. Manag. 29(3): 302–326

    Article  Google Scholar 

  13. Kahraman C and Çebi F 2018 Fuzzy approaches in production research and information management. J. Enterp. Inf. Manag. 31(4): 490–491

    Article  Google Scholar 

  14. Ajirlo S F, Amirteimoori A and Kordrostami S 2019 Two-stage additive integer-valued data envelopment analysis models. J. Modell. Manag. 14(1): 199–213

    Article  Google Scholar 

  15. [15] Jalali-Naini S G, Paydar M and Fathian M 2013 Fuzzy stochastic linear programming-based approach for multiple departures single destination multiple travelling salesman problem. Int. J. Oper. Res. 17(4): 417–435

    Article  MathSciNet  Google Scholar 

  16. Liang L, Cook W D and Zhu J 2008 DEA models for two-stage processes: game approach and efficiency decomposition. Naval Res. Logist. 55: 643–653

    Article  MathSciNet  Google Scholar 

  17. [17] Shafiee M, HosseinzadehLotfi F, Saleh H and Ghaderi M 2016 A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach. Ind. Eng. Int. 12: 81–91

    Article  Google Scholar 

  18. Du J, Liang L, Chen Y, Cook W D and Zhu J 2011 A bargaining game model for measuring performance of two-stage network structures. Eur. J. Oper. Res. 210: 390–397

    Article  MathSciNet  Google Scholar 

  19. Chen Li, Wang W et al 2014 Measurement of China’s regional economic efficiency and environmental efficiency: a DEA-NBG approach. In: Proceedings of the International Conference on Management Science & Engineering, pp. 687–694

  20. Li Y, Xie J, Wang M and Liang L 2016 Super efficiency evaluation using a common platform on a cooperative game. Eur. J. Oper. Res. 255: 884–892

    Article  MathSciNet  Google Scholar 

  21. Jalali-Naini S G, Moini A and Jahangoshai Rezaee M 2013 Nash bargaining game model for two parallel stages process evaluation with shared inputs. Int. J. Adv. Manuf. Technol. 67: 475–484

    Article  Google Scholar 

  22. An Q, Wen Y, Ding T and Li Y 2019 Resource sharing and payoff allocation in a three-stage system: integrating network DEA with the Shapley value method. Omega 85: 16–25

    Article  Google Scholar 

  23. Amirkhan M, Didehkhani H, Khalili-Damghani K and Hafezalkotob A 2018 Measuring performance of a three-stage network structure using data envelopment analysis and Nash bargaining game: a supply chain application. Int. J. Inf. Technol. Decis. Mak. 17(05): 1429–1467

    Article  Google Scholar 

  24. Koronakos G, Sotiros D and Despotis D K 2019 Reformulation of network data envelopment analysis models using a common modelling framework. Eur. J. Oper. Res. 278(2): 472–480

    Article  MathSciNet  Google Scholar 

  25. Cook W D and Zhu J 2012 Data envelopment analysis. a handbook on the modeling of internal structures and networks. International Series in Operations Research & Management Science 208

  26. Kao C and Hwang S N 2008 Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185(1): 418–429

    Article  Google Scholar 

  27. Chen Y, Cook W D, Li N and Zhu J 2009 Additive efficiency decomposition in two stage DEA. Eur. J. Oper. Res. 196: 1170–1176

    Article  Google Scholar 

  28. Maleki S and Matin R K 2019 A Russell-based model for estimating overall and divisional efficiency in two-stage production systems with sets of convex hulls in intermediate products. Sādhanā 44(3): 69

    Article  MathSciNet  Google Scholar 

  29. Cooper W W, Thompson R G and Thrall R M 1996 Extensions and new developments in DEA. Ann. Oper. Res. 66: 3–45

    MathSciNet  MATH  Google Scholar 

  30. Camanho A S and Dyson R G 2005 Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments. Eur. J. Oper. Res. 161: 432–446

    Article  Google Scholar 

  31. Jahanshahloo G R, Soleimani-damaneh M and Mostafaee A 2008 A simplified version of the DEA cost efficiency model. Eur. J. Oper. Res. 184: 814–815

    Article  Google Scholar 

  32. Bagherzadeh Valami H 2009 Cost efficiency with triangular fuzzy number input prices: an application of DEA. Chaos Solitons Fractals 42(3): 1631–1637

    Article  MathSciNet  Google Scholar 

  33. Lei F and Li H 2013 Duality and efficiency computations in the cost efficiency model with price uncertainty. Comput. Oper. Res. 40: 594–602

    Article  MathSciNet  Google Scholar 

  34. Conceição M, Portela A S and Thanassoulis E 2014 Economic efficiency when prices are not fixed: disentangling quantity and price efficiency. Omega 47: 36–44

    Article  Google Scholar 

  35. Toloo M 2016 A cost efficiency approach for strategic vendor selection problem under certain input prices assumption. Measurement 85: 175–183

    Article  Google Scholar 

  36. Garfamy R M 2006 A data envelopment analysis approach based on total cost of ownership for supplier selection. J. Enterp. Inf. Manag. 19(6): 662–678

    Article  Google Scholar 

  37. Sarkar S 2019 Detection of cost leaders using non-central principal component analysis and data envelopment analysis. Benchmark. Int. J. 26(2): 548–566

    Article  Google Scholar 

  38. Cooper W W and Seiford L M 2000 Data envelopment analysis. Kluwer Academic Publishers

  39. Fukuyama H and Matousek R 2011 Efficiency of Turkish banking: two-stage network system. Variable returns to scale model. J. Int. Financ. Mark. Inst. Money 21: 75–91

    Article  Google Scholar 

  40. Lozano S 2011 Scale and cost efficiency analysis of networks of processes. Expert Syst. Appl. 38: 6612–6617

    Article  Google Scholar 

  41. Wanke P and Barros C 2014 Two-stage DEA: an application to major Brazilian banks. Expert Syst. Appl. 41: 2337–2344

    Article  Google Scholar 

  42. Petridis K, Ünsal M G, Dey P K and Örkcü H H 2019 A novel network data envelopment analysis model for performance measurement of Turkish electric distribution companies. Energy 174: 985–998

    Article  Google Scholar 

  43. Schaffnit C, Rosen D and Paradi J C 1997 Best practice analysis of bank branches: an application of DEA in a large Canadian bank. Eur. J. Oper. Res. 98: 269–289

    Article  Google Scholar 

  44. Podinovski V V 2001 Validating absolute weight bounds in data envelopment analysis (DEA) models. J. Oper. Res. Soc. 52(2): 221–225

    Article  Google Scholar 

  45. Khalili-Damghani K and Shahmir Z 2015 Uncertain network data envelopment analysis with undesirable outputs to evaluate the efficiency of electricity power production and distribution processes. Comput. Ind. Eng. 88: 131–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MEHRZAD NAVABAKHSH.

Appendix A

Appendix A

In this part, we prove that the area set of \( S^{\prime} \) is convex.

Proof

Assume \( \left( {v^{\prime}_{1} , \ldots ,v^{\prime}_{m} ,w^{\prime}_{1} , \ldots ,w^{\prime}_{d} ,u^{\prime}_{1} , \ldots ,u^{\prime}_{s} } \right) \in S \) and \( \left( {v^{\prime\prime}_{1} , \ldots ,v^{\prime\prime}_{m} ,w^{\prime\prime}_{1} , \ldots ,w^{\prime\prime}_{d} ,u^{\prime\prime}_{1} , \ldots ,u^{\prime\prime}} \right) \in S \). Then for every \( \lambda \in \left[ {0,1} \right] \) the following relationship is established:

$$ \begin{aligned} & \lambda v^{\prime}_{i} + (1 - \lambda )v^{\prime\prime}_{i} \ge 0,\quad i = 1, \ldots ,m \\ & \lambda w^{\prime}_{d} + (1 - \lambda )w^{\prime\prime}_{d} \ge 0,\quad d = 1, \ldots ,D \\ & \lambda u^{\prime}_{r} + (1 - \lambda )u^{\prime\prime}_{r} \ge 0,\quad r = 1, \ldots ,s. \\ \end{aligned} $$

Thus, we have

$$ \begin{aligned} \sum\limits_{i = 1}^{m} {[\lambda v^{\prime}_{i} + (1 - \lambda )v^{\prime\prime}_{i} ]x_{ij} } & = 1 \\ & = \lambda \sum\limits_{i = 1}^{m} {v^{\prime}_{i} x_{ij} } + (1 - \lambda )\sum\limits_{i = 1}^{m} {v^{\prime\prime}_{i} x_{ij} } \\ & = \lambda + (1 - \lambda ) = 1 \\ \end{aligned} $$
$$ \begin{aligned} \sum\limits_{d = 1}^{D} {\left[ {\lambda w^{\prime}_{d} + (1 - \lambda )w^{\prime\prime}_{d} } \right]} z_{dj} & = \lambda \sum\limits_{d = 1}^{D} {w^{\prime}_{d} z_{dj} + (1 - \lambda )\sum\limits_{d = 1}^{D} {w^{\prime\prime}_{d} z_{dj} } } \\ & \quad \le \lambda \sum\limits_{i = 1}^{m} {v_{i} x_{ij} } + (1 - \lambda )\sum\limits_{i = 1}^{m} {v_{i} x_{ij} } \\ & \quad \le \sum\limits_{i = 1}^{m} {[\lambda v_{i} + (1 - \lambda )v_{i} ]x_{ij} } \\ \end{aligned} $$
$$ \begin{aligned} \sum\limits_{r = 1}^{s} {\left[ {\lambda u^{\prime}_{r} + (1 - \lambda )u^{\prime\prime}_{r} } \right]} y_{rj} & = \lambda \sum\limits_{r = 1}^{s} {u^{\prime}_{r} y_{rj} + (1 - \lambda )\sum\limits_{r = 1}^{s} {u^{\prime\prime}_{r} y_{rj} } } \\ & \quad \le \lambda \sum\limits_{d = 1}^{D} {w^{\prime}_{d} z_{dj} + (1 - \lambda )\sum\limits_{d = 1}^{D} {w^{\prime\prime}_{d} z_{dj} } } \\ & \quad \le \sum\limits_{d = 1}^{D} {\left[ {\lambda w^{\prime}_{d} + (1 - \lambda )w^{\prime\prime}_{d} } \right]} z_{dj} \\ \end{aligned} $$
$$ \begin{aligned} \lambda v^{\prime}_{{i^{a} }} + (1 - \lambda )v^{\prime\prime}_{{i^{a} }} - \frac{{p_{{i^{a} o}} }}{{p_{{i^{b} o}} }}(\lambda v^{\prime}_{{i^{b} }} + (1 - \lambda )v^{\prime\prime}_{{i^{b} }} ) & = \lambda (v^{\prime}_{{i^{a} }} - \frac{{p_{{i^{a} o}} }}{{p_{{i^{b} o}} }}v^{\prime}_{{i^{b} }} ) + (1 - \lambda )(v^{\prime\prime}_{{i^{a} }} - \frac{{p_{{i^{a} o}} }}{{p_{{i^{b} o}} }}v^{\prime\prime}_{{i^{b} }} ) \\ & = 0 \\ \end{aligned} $$

The last constraint is similarly convex.

Based on this:

$$ \begin{aligned} & \lambda w^{\prime}_{d} + (1 - \lambda )w^{\prime\prime}_{d} \in S,\quad d = 1, \ldots ,D \\ & \lambda u^{\prime}_{r} + (1 - \lambda )u^{\prime\prime}_{r} \in S,\quad r = 1, \ldots ,s \\ & \lambda v^{\prime}_{i} + (1 - \lambda )v^{\prime\prime}_{i} \in S,\quad i = 1, \ldots ,m. \\ \end{aligned} $$

Hence

$$ \lambda \left( {v^{\prime}_{1} , \ldots ,v^{\prime}_{m} ,w^{\prime}_{1} , \ldots ,w^{\prime}_{d} ,u^{\prime}_{1} , \ldots ,u^{\prime}_{s} } \right) + (1 - \lambda )\left( {v^{\prime\prime}_{1} , \ldots ,v^{\prime\prime}_{m} ,w^{\prime\prime}_{1} , \ldots ,w^{\prime\prime}_{d} ,u^{\prime\prime}_{1} , \ldots ,u^{\prime\prime}_{s} } \right) \in S. $$

Therefore, it can be concluded that the set \( S \) is convex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MOUSAVIZADEH, R., NAVABAKHSH, M. & HAFEZALKOTOB, A. Cost-efficiency measurement for two-stage DEA network using game approach: an application to electrical network in Iran. Sādhanā 45, 267 (2020). https://doi.org/10.1007/s12046-020-01480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-01480-5

Keywords

Navigation