Skip to main content
Log in

Microstructure and Wear Properties of Hot-Pressed NiCrBSi/TiC Composite Materials

  • REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In this study, TiC-reinforced NiCrBSi matrix composite materials were produced using the hot pressing powder metallurgy (PM) technique. The effect of the addition of titanium carbide to NiCrBSi powder in different proportions (5, 10, and 20 wt %) on the microstructure, hardness, relative density, and wear properties of composites was investigated experimentally. NiCrBSi–TiC composites were produced for 10 min at 1000°C with an applied pressure of 45 MPa using a vacuum-assisted automatic hot-pressing machine. The wear behaviors of the composites were compared through dry sliding wear tests. Wear rates and coefficient of friction (COF) values were observed of composites. In addition, the main wear mechanisms are investigated by using SEM and EDS analyses of the worn surfaces. The wear rates of the composites were decreased by increasing the TiC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Neville, A., Reza, F., Chiovelli, S., and Revega, T., Assessing metal matrix composites for corrosion and erosion-corrosion applications in the oil sands industry, Corrosion, 2006, vol. 62, no. 8, pp. 657–675. https://doi.org/10.5006/1.3278293

    Article  CAS  Google Scholar 

  2. Tjong, S.C. and Ma, Z.Y., Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng., R, 2000, vol. 29, nos. 3–4, pp. 49–113. https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  3. Wang, J. and Fu, S., Production of in situ vanadium carbide particulate reinforced iron matrix composite, Mater. Sci., 2014, vol. 20, no. 4, pp. 409–413. https://doi.org/10.5755/j01.ms.20.4.6445

    Article  Google Scholar 

  4. Serres, N., Hlawka, F., Costil, S., Langlade, C., and Machi, F., Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi-WC layers manufactured via hybrid plasma/laser process, Appl. Surf. Sci., 2011, vol. 257, no. 12, pp. 5132–5137. https://doi.org/10.1016/j.apsusc.2010.11.062

    Article  CAS  Google Scholar 

  5. Bin, C.A.I., Tan, Y.F., Long, H.E., Hua, T.A.N., and Li, G.A.O., Tribological properties of TiC particles reinforced Ni-based alloy composite coatings, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 6, pp. 1681–1688. https://doi.org/10.1016/S1003-6326(13)62648-5

    Article  CAS  Google Scholar 

  6. Buytoz, S., Ulutan, M., Islak, S., Kurt, B., and Çelik, O.N., Microstructural and wear characteristics of high velocity oxygen fuel (HVOF) sprayed NiCrBSi-SiC composite coating on SAE 1030 steel, Arabian J. Sci. Eng., 2013, vol. 38, no. 6, pp. 1481–1491. https://doi.org/10.1007/s13369-013-0536-y

    Article  CAS  Google Scholar 

  7. Zikin, A., Antonov, M., Hussainova, I., Katona, L., and Gavrilović, A., High temperature wear of cermet particle reinforced NiCrBSi hardfacings, Tribol. Int., 2013, vol. 68, pp. 45–55. https://doi.org/10.1016/j.triboint.2012.08.013

    Article  CAS  Google Scholar 

  8. Ma, J., Yang, J., Bi, Q., and Liu, W., Dry-sliding tribological behavior of Fe–28Al–5Cr/TiC composites, Wear, 2011, vol. 271, nos. 5–6, pp. 881–888. https://doi.org/10.1016/j.wear.2011.03.020

    Article  CAS  Google Scholar 

  9. Zhang, X., Ma, J., Fu, L., Zhu, S., Li, F., Yang, J., and Liu, W., High temperature wear resistance of Fe–28Al–5Cr alloy and its composites reinforced by TiC, Tribol. Int., 2013, vol. 61, pp. 48–55. https://doi.org/10.1016/j.triboint.2012.12.005

    Article  CAS  Google Scholar 

  10. Gómez-del Rio, T., Garrido, M.A., Fernández, J.E., Cadenas, M., and Rodriguez, J., Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings, J. Mater. Process. Technol., 2008, vol. 204, nos. 1–3, pp. 304–312. https://doi.org/10.1016/j.jmatprotec.2007.11.042

    Article  CAS  Google Scholar 

  11. Miguel, J.M., Guilemany, J.M., and Vizcaino, S., Tribological study of NiCrBSi coating obtained by different processes, Tribol. Int., 2003, vol. 36, no. 3, pp. 181–187. https://doi.org/10.1016/S0301-679X(02)00144-5

    Article  CAS  Google Scholar 

  12. Niranatlumpong, P. and Koiprasert, H., Phase transformation of NiCrBSi-WC and NiBSi-WC arc sprayed coatings, Surf. Coat. Technol., 2011, vol. 206, nos. 2–3, pp. 440–445. https://doi.org/10.1016/j.surfcoat.2011.07.057

    Article  CAS  Google Scholar 

  13. Tobar, M.J., Alvarez, C., Amado, J.M., Rodríguez, G., and Yanez, A., Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel, Surf. Coat. Technol., 2006, vol. 200, nos. 22–23, pp. 6313–6317. https://doi.org/10.1016/j.surfcoat.2005.11.093

    Article  CAS  Google Scholar 

  14. Gonzalez, R., Cadenas, M., Fernández, R., Cortizo, J.L., and Rodríguez, E., Wear behavior of flame sprayed NiCrBSi coating remelted by flame or by laser, Wear, 2007, vol. 262, nos. 3–4, pp. 301–307. https://doi.org/10.1016/j.wear.2006.05.009

    Article  CAS  Google Scholar 

  15. Jia, J., Lu, J., Zhou, H., and Chen, J., Tribological behavior of Ni-based composite under distilled water lubrication, Mater. Sci. Eng., A, 2004, vol. 381, nos. 1–2, pp. 80–85. https://doi.org/10.1016/j.msea.2004.03.059

    Article  CAS  Google Scholar 

  16. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2 of ASM Handbook, Davis, J.R., Ed., Materials Park, OH: ASM Int., 1990.

    Google Scholar 

  17. Onuoha, C.C., Kipouros, G.J., Farhat, Z.N., and Plucknett, K.P., The reciprocating wear behavior of TiC–304L stainless steel composites prepared by melt infiltration, Wear, 2013, vol. 303, nos. 1–2, pp. 321–333. https://doi.org/10.1016/j.wear.2013.03.040

    Article  CAS  Google Scholar 

  18. Akhtar, F., Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites, J. Alloys Compd., 2008, vol. 459, nos. 1–2, pp. 491–497. https://doi.org/10.1016/j.jallcom.2007.05.018

    Article  CAS  Google Scholar 

  19. Karantzalis, A.E., Lekatou, A., and Tsirka, K., Solidification observations and sliding wear behavior of vacuum arc melting processed Ni–Al–TiC composites, Mater. Charact., 2012, vol. 69, pp. 97–107. https://doi.org/10.1016/j.matchar.2012.04.013

    Article  CAS  Google Scholar 

  20. Russias, J., Cardinal, S., Aguni, Y., Fantozzi, G., Bienvenu, K., and Fontaine, J., Influence of titanium nitride addition on the microstructure and mechanical properties of TiC-based cermets, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, nos. 4–6, pp. 358–362. https://doi.org/10.1016/j.ijrmhm.2005.05.008

    Article  CAS  Google Scholar 

  21. Wang, H., Zhang, R., Hu, X., Wang, C.A., and Huang, Y., Characterization of a powder metallurgy SiC/Cu–Al composite, J. Mater. Process. Technol., 2008, vol. 197, nos. 1–3, pp. 43–48. https://doi.org/10.1016/j.jmatprotec.2007.06.002

    Article  CAS  Google Scholar 

  22. Wang, Y., Zhang, X., Zeng, G., and Li, F., In situ production of Fe–VC and Fe–TiC surface composites by cast-sintering, Composites, Part A, 2001, vol. 32, no. 2, pp. 281–286. https://doi.org/10.1016/S1359-835X(00)00118-4

    Article  CAS  Google Scholar 

  23. Rahimian, M., Ehsani, N., Parvin, N., and Baharvandi, H.R., The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite, Mater. Des., 2009, vol. 30, no. 8, pp. 3333–3337. https://doi.org/10.1016/j.matdes.2008.11.027

    Article  CAS  Google Scholar 

  24. Kang, H.K., Microstructure and electrical conductivity of high volume Al2O3-reinforced copper matrix composites produced by plasma spray, Surf. Coat. Technol., 2005, vol. 190, p. 448–552. https://doi.org/10.1016/j.surfcoat.2004.02.002

    Article  CAS  Google Scholar 

  25. Islak, S., Çelik, E., Kir, D., and Özorak, C., Characterization of hot pressed CuAl–TiC composites with different TiC grain sizes, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 4, pp. 374–380. https://doi.org/10.3103/S1067821216040040

    Article  Google Scholar 

  26. da Silva, L.J., Scheuer, C.J., and D’Oliveira, A.S.C., Effect of microstructure on wear performance of NiCrSiBC coatings, Wear, 2019, vols. 428–429, pp. 387–394. https://doi.org/10.1016/j.wear.2019.04.005

    Article  CAS  Google Scholar 

  27. Islak, S., Kir, D., and Buytoz, S., Effect of sintering temperature on electrical and microstructure properties of hot-pressed Cu–TiC composites, Sci. Sintering, 2014, vol. 46, no. 1, pp. 15–21. https://doi.org/10.2298/SOS1401015I

    Article  CAS  Google Scholar 

  28. Efe, G.C., Ipek, M., Zeytin, S., and Bindal, C., An investigation of the effect of SiC particle size on Cu–SiC composites, Composites, Part B, 2012, vol. 43, no. 4, pp. 1813–1822. https://doi.org/10.1016/j.compositesb.2012.01.006

    Article  CAS  Google Scholar 

  29. Ngai, T.L., Zheng, W., and Li, Y., Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite, Prog. Nat. Sci.: Mater. Int., 2013, vol. 23, no. 1, pp. 70–76. https://doi.org/10.1016/j.pnsc.2013.01.011

    Article  Google Scholar 

  30. Shu, K.M. and Tu, G.C., The microstructure and the thermal expansion characteristics of Cu/SiCp composites, Mater. Sci. Eng., A, 2003, vol. 349, nos. 1–2, pp. 236–247. https://doi.org/10.1016/S0921-5093(02)00788-8

    Article  Google Scholar 

  31. Kumar, G.V., Rao, C.S.P., and Selvaraj, N., Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites—a review, J. Miner. Mater. Charact. Eng., 2011, vol. 10, no. 1, pp. 59–91. https://doi.org/10.4236/jmmce.2011.101005

    Article  Google Scholar 

  32. Bin, C.A.I., Tan, Y.F., Hua, T.A.N., Jing, Q.F., and Zhang, Z.W., Tribological behavior and mechanism of NiCrBSi–Y2O3 composite coatings, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 7, pp. 2002–2010. https://doi.org/10.1016/S1003-6326(13)62689-8

    Article  CAS  Google Scholar 

  33. Stoica, V., Ahmed, R., Itsukaichi, T., and Tobe, S., Sliding wear evaluation of hot isostatically pressed (HIPed) thermal spray cermet coatings, Wear, 2004, vol. 257, no. 11, pp. 1103–1124. https://doi.org/10.1016/j.wear.2004.07.016

    Article  CAS  Google Scholar 

  34. Bailey, R. and Sun, Y., Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium, Wear, 2013, vol. 308, nos. 1–2, pp. 61–70. https://doi.org/10.1016/j.wear.2013.09.020

    Article  CAS  Google Scholar 

  35. Krishna, D.S.R., Brama, Y.L., and Sun, Y., Thick rutile layer on titanium for tribological applications, Tribol. Int., 2007, vol. 40, no. 2, pp. 329–334. https://doi.org/10.1016/j.triboint.2005.08.004

    Article  CAS  Google Scholar 

  36. Yetim, A.F., Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions, Surf. Coat. Technol., 2010, vol. 205, no. 6, pp. 1757–1763. https://doi.org/10.1016/j.surfcoat.2010.08.079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Islak, M. Ulutan or S. Buytoz.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islak, S., Ulutan, M. & Buytoz, S. Microstructure and Wear Properties of Hot-Pressed NiCrBSi/TiC Composite Materials. Russ. J. Non-ferrous Metals 61, 571–582 (2020). https://doi.org/10.3103/S1067821220050053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220050053

Keywords:

Navigation