Skip to main content
Log in

On the Mean Curvature Flow of Submanifolds in the Standard Gaussian Space

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the regular geometric behavior of the mean curvature flow (MCF) of submanifolds in the standard Gaussian metric space \(({{\mathbb {R}}}^{m+p},e^{-|x|^2/m}\overline{g})\) where \(({{\mathbb {R}}}^{m+p},\overline{g})\) is the standard Euclidean space and \(x\in {{\mathbb {R}}}^{m+p}\) denotes the position vector. Note that, as a special Riemannian manifold, \(({{\mathbb {R}}}^{m+p},e^{-|x|^2/m}\overline{g})\) has an unbounded curvature. Up to a family of diffeomorphisms on \(M^m\), the mean curvature flow we considered here turns out to be equivalent to a special variation of the “conformal mean curvature flow” which we have introduced previously. The main theorem of this paper indicates, geometrically, that any immersed compact submanifold in the standard Gaussian space, with the square norm of the position vector being not equal to m, will blow up at a finite time under the mean curvature flow, in the sense that either the position or the curvature blows up to infinity; Moreover, by this main theorem, the interval [0, T) of time in which the flowing submanifolds keep regular has some certain optimal upper bound, and it can reach the bound if and only if the initial submanifold either shrinks to the origin or expands uniformly to infinity under the flow. Besides the main theorem, we also obtain some other interesting conclusions which not only play their key roles in proving the main theorem but also characterize in part the geometric behavior of the flow, being of independent significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alías, L.J., de Lira, J.H., Rigoli, M.: Mean curvature flow solitons in the presence of conformal vector fields. J. Geom. Anal. 30(2), 1466–1529 (2020). https://doi.org/10.1007/s12220-019-00186-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Differ. Geom. 39(2), 407–431 (1994). https://doi.org/10.4310/jdg/1214454878

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, B., Baker, C.: Mean curvature flow of pinched submanifolds to spheres. J. Differ. Geom. 85(3), 357–395 (2010). https://doi.org/10.4310/jdg/1292940688

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, C.: The mean curvature flow of submanifolds of high codimension, arXiv:1104.4409v1 [math.DG]

  5. Baker, C., Nguyen, H. T.: Evolving pinched submanifolds of the sphere by mean curvature flow, arXiv:2004.12259v1 [math.DG]

  6. Borisenko, A., Miquel, V.: Gaussian mean curvature flow. J. Evol. Equ. 10(2), 413–423 (2010). https://doi.org/10.1007/s00028-010-0054-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Borisenko, A., Rovenski, V.: Gaussian mean curvature flow for submanifolds in space forms. In: Rovenski, V., Walczak, P. (eds.) Geometry and its Applications. Springer Proc. Math. Stat., vol. 72. Springer, Cham, pp. 39–50 (2014). https://doi.org/10.1007/978-3-319-04675-4_2

  8. Brakke, K.: The Motion of a Surface by its Mean Curvature. Mathematical Notes, 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  9. Chow, B., Knopf, D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110. Amer. Math. Soc., Providence, RI (2004). https://doi.org/10.1090/surv/110

  10. DeTurck, D.M.: Deforming metrics in the direction of their Ricci tensors. J. Differential Geom. 18(1), 157–162 (1983) https://doi.org/10.4310/jdg/1214509286.https://projecteuclid.org/euclid.jdg/1214509286

  11. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and their Applications, vol. 57. Birkhäuser, Boston (2004)

    Google Scholar 

  12. Guo, S.Z., Li, G.H., Wu, C.X.: Mean curvature flow with a forcing field in the direction of the position vector of submanifolds. Acta Math. Sin. (Chin. Ser.) 57(1), 139–150 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982). https://doi.org/10.4310/jdg/1214436922

    Article  MathSciNet  MATH  Google Scholar 

  14. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20(1), 237–266 (1984) https://doi.org/10.4310/jdg/1214438998.https://projecteuclid.org/euclid.jdg/1214438998

  15. Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84(3), 463–480 (1986). https://doi.org/10.1007/BF01388742

    Article  MathSciNet  MATH  Google Scholar 

  16. Jian, H.-Y., Xu, X.W.: The vortex dynamics of a Ginzburg–Landau system under pinning effect. Sci. China Ser. A 46(4), 488–498 (2003)

    Article  MathSciNet  Google Scholar 

  17. Jian, H.-Y., Liu, Y.N.: Ginzburg-Landau vortex and mean curvature flow with external force field. Acta Math. Sin. (Engl. Ser.) 22(6), 1831–1842 (2006). https://doi.org/10.1007/s10114-005-0698-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, G.H., Salavessa, I.: Forced convex mean curvature flow in Euclidean spaces. Manuscr. Math. 126(3), 333–351 (2008). https://doi.org/10.1007/s00229-008-0181-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Lei, L., Xu, H. W.: New developments in mean curvature flow of arbitrary codimension inspired by Yau rigidity theory. In: Proceedings of the Seventh International Congress of Chinese Mathematicians, Vol. I, 327–348, Adv. Lect. Math. (ALM), 43, Int. Press, Somerville, MA (2019) (see also arXiv:2004.13607v1 [math.DG])

  20. Li, X.X., Zhang, D.: The blow-up of the conformal mean curvature flow. Sci. China Math. 63(4), 733–754 (2020). https://doi.org/10.1007/s11425-018-9367-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Y.N., Jian, H.-Y.: Evolution of hypersurfaces by the mean curvature minus an external force field. Sci. China Ser. A 50(2), 231–239 (2007). https://doi.org/10.1007/s11425-007-2077-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Jian, H.-Y., Liu, Y.N.: Long-time existence of mean curvature flow with external force fields. Pac. J. Math. 234(2), 311–324 (2008). https://doi.org/10.2140/pjm.2008.234.311

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, K.F., Xu, H.W., Zhao, E.T.: Mean curvature flow of higher codimension in Riemannian manifolds, arXiv:1204.0107v1

  24. Liu, K.F., Xu, H.W., Ye, F., Zhao, E.T.: Mean curvature flow of higher codimension in hyperbolic spaces. Commun. Anal. Geom. 21(3), 651–669 (2013). https://doi.org/10.4310/CAG.2013.v21.n3.a8

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, K.F., Xu, H.W., Ye, F., Zhao, E.T.: The extension and convergence of mean curvature flow in higher codimension. Trans. Amer. Math. Soc. 370(3), 2231–2262 (2018). https://doi.org/10.1090/tran/7281

    Article  MathSciNet  MATH  Google Scholar 

  26. Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    Article  MathSciNet  Google Scholar 

  27. Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27(8), 900–904 (1956). https://doi.org/10.1063/1.1722511

    Article  MathSciNet  Google Scholar 

  28. Pu, D., Su, J.J., Xu, H.W.: Surfaces pinched by normal curvature for mean curvature flow in space forms, arXiv:2004.14258v1 [math.DG]

  29. Schnürer, O.C., Smoczyk, K.: Evolution of hypersurfaces in central force fields. J. Reine Angew. Math. 550, 77–95 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Smoczyk, K.: Mean curvature flow in higher codimension: introduction and survey. Global Differ. Geom. 2012, 231–274 (2012). https://doi.org/10.1007/978-3-642-22842-1_9

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, M.-T.: Lectures on mean curvature flows in higher codimensions. Handbook of geometric analysis. No. 1, 525–543, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008) (see also arXiv:1104.3354v1 [math.DG])

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by National Natural Science Foundation of China (No. 11631002, No. 11821001, No. 11890663, No. 11961131001, No. 11671121, No. 11871197 and No. 11971153)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, AM., Li, X. & Zhang, D. On the Mean Curvature Flow of Submanifolds in the Standard Gaussian Space. Results Math 75, 173 (2020). https://doi.org/10.1007/s00025-020-01301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01301-5

Keywords

Mathematics Subject Classification

Navigation