Skip to main content
Log in

Sonochemical synthesis of Zr-fumaric based metal-organic framework (MOF) and its performance evaluation in methyl violet 2B decolorization by photocatalysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Zr-fumaric based metal-organic framework (MOF) was successfully sonochemically synthesized and characterized by powder X-ray diffraction (PXRD), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The photocatalytic degradation of Methyl Violet 2B (MV2B) using Zr-fum MOF under UV light irradiation was investigated and showed satisfactory results. A catalytic mechanism is proposed in terms of the conduction band (CB) and valence band (VB) gap and the associated light-induced transition. The results showed that the studied MOF-based photocatalyst exhibit 90% photocatalytic efficiency for the degradation of the organic pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dahri MK, Kooh MRR, Lim LBL (2016) Adsorption of toxic methyl violet 2B dye from aqueous solution using Artocarpus heterophyllus (Jackfruit) seed as an adsorbent. Am Chem Sci Int J 15(2):1–12. https://doi.org/10.9734/ACSJ/201627127

    Article  CAS  Google Scholar 

  2. Zhou EH (2017) Photocatalytic degradation of organic dyes by a stable and biocompatible Zn(II) MOF having ferulic acid: experimental findings and theoretical correlation. J Mol Struct 1149:352–356

    CAS  Google Scholar 

  3. Sharma VK, Feng M (2017) Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes. J Hazard Mater 372:3–16

    PubMed  Google Scholar 

  4. Wang C, Li J, Lv X, Zhang Y, Guo G (2014) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:2831–2867

    CAS  Google Scholar 

  5. Byrne C, Subramanian G, Pillai SC (2017) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555

    Google Scholar 

  6. Dias EM, Petit C (2015) Towards the use of metal-organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A 3:22484–22506

    CAS  Google Scholar 

  7. Wang CC et al (2016) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216

    CAS  Google Scholar 

  8. Wu Z et al (2017) Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives. Chem Cat Chem 9:41–64

    CAS  Google Scholar 

  9. Ban JJ et al (2017) Mesoporous ZnO microcube derived from a metalorganic framework as photocatalyst for the degradation of organic dyes. J Solid State Chem 256:151–157

    CAS  Google Scholar 

  10. Mendiratta S et al (2017) Zn(II)-based metal−organic framework: an exceptionally thermal stable, guest-free low dielectric material. J Mater Chem C 5:1508–1513

    CAS  Google Scholar 

  11. Hamon L et al (2009) Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. J Am Chem Soc 131:8775–8777

    CAS  PubMed  Google Scholar 

  12. Hu P et al (2018) Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)–VOCs competitive adsorption in humid environment. Chem Eng J 332:608–618

    CAS  Google Scholar 

  13. Zhu B et al (2012) Iron and 1,3,5-Benzenetricarboxylic metal−organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116:8601–8607

    CAS  Google Scholar 

  14. Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783

    CAS  Google Scholar 

  15. Lee JY et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    CAS  PubMed  Google Scholar 

  16. Zhou JJ et al (2015) In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 346:278–283

    CAS  Google Scholar 

  17. Huang W, Liu N, Zhang X, Wu M, Tang L (2017) Metal-organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl Surf Sci 425:107–116

    CAS  Google Scholar 

  18. Pi Y et al (2017) Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Res 10:3543–3556

    CAS  Google Scholar 

  19. Arroussi A, Gaffour H, Mokhtari M, Boukli-Hacene L (2019) Investigating metal-organic framework based on nickel (II) and benzene 1,3,5-tricarboxylic acid (H3BTC) as a new photocatalyst for degradation of 4-nitrophenol. Int J Environ Stud 77:137–151

    Google Scholar 

  20. Li JR (2013) Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Commun 4:1538

    PubMed  Google Scholar 

  21. Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    CAS  PubMed  Google Scholar 

  22. Adhikari AK, Lin KS (2016) Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chem Eng J 284:1348–1360

    CAS  Google Scholar 

  23. Rosi NL et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    CAS  PubMed  Google Scholar 

  24. Collins DJ, Zhou HC (2007) Hydrogen storage in metal-organic frameworks. J Mater Chem 17:3154–3160

    CAS  Google Scholar 

  25. Alezi D et al (2015) MOF Crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137:13308–13318

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma S, Zhou HC (2010) Gas storage in porous metal-organic frameworks for clean energy applications. Chem Commun 46:44–53

    CAS  Google Scholar 

  27. Wang C, Wang P, Feng L (2012) Influence of organic carboxylic acids on self-assembly of silver(I) complexes containing 1,2-bis(4-pyridyl)ethane ligands. Transit Met Chem 37:225–234

    CAS  Google Scholar 

  28. Sun LB et al (2012) Metal-organic polyhedra confinement in silica nanopores. J Am Chem Soc 134:15923–15928

    CAS  PubMed  Google Scholar 

  29. Xie Y et al (2014) Unusual preservation of polyhedral molecular building units in a metal-organic framework with evident desymmetrization in ligand design. Chem Commun 50:563–565

    CAS  Google Scholar 

  30. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    CAS  PubMed  Google Scholar 

  31. Alvaro M, Carbonell E, Ferrer B, Xamena FXL, Garcia H (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem Eur J 13:5106–5112

    CAS  PubMed  Google Scholar 

  32. Jiang D, Mallat T, Krumeich F, Baiker A (2008) Copper-based metal-organic framework for the facile ring-opening of epoxides. J Catal 257:390–395

    CAS  Google Scholar 

  33. Hasegawa S et al (2007) Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J Am Chem Soc 129:2607–2614

    CAS  PubMed  Google Scholar 

  34. Kovtunov KV, Zhivonitko VV, Corma A, Koptyug IV (2010) Parahydrogen-induced polarization in heterogeneous hydrogenations catalyzed by an immobilized Au(III) complex. J Phys Chem Lett 1:1705–1708

    CAS  Google Scholar 

  35. Wang Q et al (2020) Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front 7:300–339

    CAS  Google Scholar 

  36. Sun D, Li Z (2017) Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chin J Chem 35:135–147

    CAS  Google Scholar 

  37. Silva CG, Luz I, Xamena FX, Corma A, Garcia H (2010) Water stable Zr–benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138

    CAS  Google Scholar 

  38. Sun D et al (2013) Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem Eur J 19:14279–14285

    CAS  PubMed  Google Scholar 

  39. Long J et al (2012) Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commum 48:11656–11658

    CAS  Google Scholar 

  40. Saidi M, Giorgi M, Boukli-hacene L (2019) Sonochemical synthesis and crystal structure of dimethylammonium bis[3-carboxy-2-(dimethylamino)propanoato-к2 N ,O1]chloridochromium(II) monohydrate. Acta Cryst E 75:604–606. https://doi.org/10.1107/S205698901900471

    Article  CAS  Google Scholar 

  41. Gaab M, Trukhan N, Maurer S, Gummaraju R, Muller U (2012) The progression of Al-based metal-organic frameworks – from academic research to industrial production and applications. Microporous Mesoporous Mater 157:131–136

    CAS  Google Scholar 

  42. Gold R et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107

    CAS  PubMed  Google Scholar 

  43. Horakova E, Vyskocil V, Barek J (2016) Interaction study of methyl violet 2B with DNA and voltammetric determination of DNA in aqueous solutions. Monatsh Chem 147:119–126

    CAS  Google Scholar 

  44. David J et al (2016) Study of the reaction mechanisms involved in the formation of zirconium oxycarbide from metal-organic frameworks (MOFs) precursors. J Alloys Compd 680:571–585

    CAS  Google Scholar 

  45. Wiβmann G et al (2012) Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater 152:64–70

    Google Scholar 

  46. Zahn G et al (2015) A water-born Zr-based porous coordination polymer: modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater 203:186–194

    CAS  Google Scholar 

  47. Pelaez M et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    CAS  Google Scholar 

  48. Keane DA et al (2014) Solar photocatalysis for water disinfection: materials and reactor design. Catal Sci Technol 4:1211–1226

    CAS  Google Scholar 

  49. Banerjee S et al (2014) New Insights into the mechanism of visible light photocatalysis. J Phys Chem Lett 5:2543–2554

    CAS  PubMed  Google Scholar 

  50. Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manag 92:311–330

    CAS  Google Scholar 

  51. Furukawa H et al (2014) Water adsorption in porous metal−organic frameworks and related materials. J Am Chem Soc 136:4369–4381

    CAS  PubMed  Google Scholar 

  52. Lente G (2015) Solving rate equations. In: Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer International Publishing, Cham

    Google Scholar 

  53. Guettaia D, Boudjemaa A, Bachari K, Mokhtari M (2018) Enhanced performance of Fe-JUL-15 prepared by ultrasonic method through the photo-degradation of ibuprofen. Environ Prog Sustain Energy 37:738–745

    CAS  Google Scholar 

  54. Kasiri MB, Aleboyeh H, Aleboyeh A (2008) Degradation of acid blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Appl Catal B Environ 84:9–15

    CAS  Google Scholar 

  55. Ejhieh AN, Khorsandi M (2010) Photodecolorization of eriochrome black T using NiS–P zeolite as a heterogeneous catalyst. J Hazard Mater 176:629–637

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the support provided by the Algerian Ministry for Education and Research and the Institute Charles Gerhardt of Montpellier (France).

Author information

Authors and Affiliations

Authors

Contributions

Leila BOUKLI-HACENE designed the study and wrote the manuscript. Meryem SAIDI carried out the synthesis and the characterization of Zr-fum MOF. Meryem SAIDI with the help of Amina BENOMARA carried out photocatalytic experiments. Malika Mokhtari provided suggestions on the design of the photocatalytic experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Leila Boukli-Hacene.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, M., Benomara, A., Mokhtari, M. et al. Sonochemical synthesis of Zr-fumaric based metal-organic framework (MOF) and its performance evaluation in methyl violet 2B decolorization by photocatalysis. Reac Kinet Mech Cat 131, 1009–1021 (2020). https://doi.org/10.1007/s11144-020-01897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01897-3

Keywords

Navigation