Skip to main content
Log in

Influence of noble metals on the catalytic performance of Ni/TiO2 for Ethanol Guerbet condensation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present work, Ni-M/TiO2 (M = Au, Pt, and Ir) were prepared and their catalytic performances were evaluated for ethanol Guerbet condensation. The characterization and evaluation results showed that the addition of noble metal adjusted the acid–base properties of catalyst and improved its catalytic performance. The number of acid sites of catalyst promoted the conversion of ethanol while the strength of basic sites of catalyst boosted the formation of n-butanol. Ni-Pt/TiO2 presented the best catalytic performance: n-butanol selectivity of 48.1% was reached at an ethanol conversion of 40.0% at 210 °C and 10 h. Furthermore the catalytic stability of Ni-Pt/TiO2 was improved significantly; it was used for 3 runs without a significant loss in its catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nezam I, Peereboom L, Miller DJ (2019) Continuous condensed-phase ethanol conversion to higher alcohols: experimental results and techno-economic analysis. J Clean Prod 209:1365–1375. https://doi.org/10.1016/j.jclepro.2018.10.276

    Article  CAS  Google Scholar 

  2. Xu Y, Avedisian CT (2015) Combustion of n-butanol, gasoline, and n-butanol/gasoline mixture droplets. Energy Fuels 29:3467–3475. https://doi.org/10.1021/acs.energyfuels.5b00158

    Article  CAS  Google Scholar 

  3. Onyestyák G (2018) Carbon supported alkaline catalysts for guerbet coupling of bioethanol. Period Polytech Chem Eng 62:91–96. https://doi.org/10.3311/PPch.10390

    Article  Google Scholar 

  4. Arvidsson M, Morandin M, Harvey S (2015) Biomass gasification-based syngas production for a conventional oxo synthesis plant-greenhouse gas emission balances and economic evaluation. J Cleaner Prod 99:192–205. https://doi.org/10.1016/j.jclepro.2015.03.005

    Article  CAS  Google Scholar 

  5. Quesadaa J, Arreola-Sánchez R, Fabaa L, Díaz E, Rentería-Tapia VM, Ordóñez S (2018) Effect of Au nanoparticles on the activity of TiO2 for ethanol upgrading reactions. Appl Catal A Gen 551:23–33. https://doi.org/10.1016/j.apcata.2017.12.004

    Article  CAS  Google Scholar 

  6. Wang D, Liu Z, Liu Q (2019) Synthesis of 1-butanol from ethanol over calcium ethoxide: experimental and DFT Simulation. J Phys Chem C 123:22932–22940. https://doi.org/10.1021/acs.jpcc.9b04993

    Article  CAS  Google Scholar 

  7. Benito P, Vaccari A, Antonetti C, Licursi D, Schiarioli N, Rodriguez-Castellón E, Galletti AMR (2019) Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase. J Cleaner Prod 209:1614–1623. https://doi.org/10.1016/j.jclepro.2018.11.150

    Article  CAS  Google Scholar 

  8. Stošić D, Hosoglu F, Bennici S, Travert A, Capron M, Dumeignil F, Couturier JL, Dubois JL, Auroux A (2017) Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7. Catal Commun 89:14–18. https://doi.org/10.1016/j.catcom.2016.10.013

    Article  CAS  Google Scholar 

  9. Han XX, An HL, Zhao XQ, Wang YJ (2020) Influence of acid-base properties on the catalytic performance of Ni/hydroxyapatite in n-butanol guerbet condensation. Catal Commun 146:106–130. https://doi.org/10.1016/j.catcom.2020.106130

    Article  CAS  Google Scholar 

  10. Hanspal S, Young ZD, Prillaman JT, Davis RJ (2017) Influence of surface acid and base sites on the guerbet coupling of ethanol to butanol over metal phosphate catalysts. J Catal 352:182–190. https://doi.org/10.1016/j.jcat.2017.04.036

    Article  CAS  Google Scholar 

  11. Panchenko VN, Paukshtis EA, Murzin DY, Simakova IL (2017) Solid base assisted n-pentanol coupling over VIII group metals: elucidation of the guerbet reaction mechanism by DRIFTS. Ind Eng Chem Res 56:13310–13321. https://doi.org/10.1021/acs.iecr.7b01853

    Article  CAS  Google Scholar 

  12. Zhang Q, Liu W, Chen B, Qiu S, Wang T (2020) Upgrading of aqueous ethanol to fuel grade higher alcohols over dandelion-like Ni-Sn catalyst. Energy Convers Manage 216:112914–112913. https://doi.org/10.1016/j.enconman.2020.112914

    Article  CAS  Google Scholar 

  13. Zhao LL, Wang Y, An HL, Zhao XQ, Wang YJ (2018) Ni/γ-Al2O3 catalyzed hydrogenation sequence of conjugated double bonds in 2-ethyl-2-hexenal and reaction kinetics. J Chem Technol Biotechnol 93:1669–1676. https://doi.org/10.1002/jctb.5539

    Article  CAS  Google Scholar 

  14. Zhao LL, An HL, Zhao XQ, Wang YJ (2017) TiO2-catalyzed n-valeraldehyde self-condensation reaction mechanism and kinetics. ACS Catal 7:4451–4461. https://doi.org/10.1021/acscatal.7b00432

    Article  CAS  Google Scholar 

  15. Li SQ, Zhu XH, An HL, Zhao XQ, Wang YJ (2020) Ethanol Guerbet condensation to n-butanol or C4–C8 alcohols over Ni/TiO2 catalyst. ChemistrySelect 5:8669–8673. https://doi.org/10.1002/slct.202001063

    Article  CAS  Google Scholar 

  16. Hinojosa-Reyes M, Zanella R, Maturano-Rojas V, Rodríguez-Gonzáleza V (2016) Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction. Appl Surf Sci 368:224–232. https://doi.org/10.1016/j.apsusc.2016.01.285

    Article  CAS  Google Scholar 

  17. Xu L, Li Y, Zhang P, Chen SZ, Wang L (2019) Preparation and characterization of bimetallic Ni-Ir/C catalysts for HI decomposition in the thermochemical water-splitting iodine-sulfur process for hydrogen production. Int J Hydrogen Energy 44:24360–24368. https://doi.org/10.1016/j.ijhydene.2019.07.145

    Article  CAS  Google Scholar 

  18. Navarro RM, Guil-Lopez R, Gonzalez-Carballo JM, Cubero A, Ismail AA, Al-Sayari SA, García Fierro JL (2014) Bimetallic MNi/Al2O3-La catalysts (M = Pt, Cu) for acetone steam reforming: role of M on catalyst structure and activity. Appl Catal A Gen 474:168–177. https://doi.org/10.1016/j.apcata.2013.09.056

    Article  CAS  Google Scholar 

  19. Legrand J, Taleb A, Gota S, Petit C (2002) Synthesis and XPS characterization of nickel boride nanoparticles. Langmuir 18:4131–4137. https://doi.org/10.1021/la0117247

    Article  CAS  Google Scholar 

  20. Zwijnenburg A, Goossens A, Sloof WG, Crajé MWJ, Kraan AM, Jongh L, Makkee M, Moulijn JA (2002) XPS and Mössbauer characterization of Au/TiO2 propene epoxidation catalysts. J Phys Chem B 106:9853–9862. https://doi.org/10.1021/jp014723w

    Article  CAS  Google Scholar 

  21. Li H, Zhao QF, Li HX (2008) Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effects of B and P. Mol Catal A Chem 285:29–35. https://doi.org/10.1016/j.molcata.2008.01.025

    Article  CAS  Google Scholar 

  22. Zafeiratos S, Kennou S (2001) Photoelectron spectroscopy study of surface alloying in the Au/Ni (s) 5(001)×(111) system. Appl Surf Sci 173:69–75. https://doi.org/10.1016/S0169-4332(00)00885-0

    Article  CAS  Google Scholar 

  23. Moraes TS, Neto RC, Ribeiro MC, Mattos LV, Kourtelesis M, Ladas S, Verykios X, Noronha FB (2015) The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol. Catal Today 242:35–49. https://doi.org/10.1016/j.cattod.2014.05.045

    Article  CAS  Google Scholar 

  24. Ramasamy K, Gray M, Job H, Santosa D, Li XS, Devaraj A, Karkamkar A, Wang Y (2016) Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol. Top Catal 59:46–54. https://doi.org/10.1007/s11244-015-0504-8

    Article  CAS  Google Scholar 

  25. Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim H, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106:1869–1877. https://doi.org/10.1021/jp013168v

    Article  CAS  Google Scholar 

  26. Lee SP, Chen YW (2010) Selective hydrogenation of furfural on Ni-P, Ni-B, and Ni-P-B ultrafine materials. Ind Eng Chem Res 38:2548–2556

    Article  Google Scholar 

  27. Chen P, Lu JQ, Xie GQ, Hu GS, Zhu L, Luo LF, Huang WX, Luo MF (2012) Effect of reduction temperature on selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Appl Catal A 433–434:236–242. https://doi.org/10.1016/j.apcata.2012.05.024

    Article  CAS  Google Scholar 

  28. Pang J, Zheng MY, He L, Li L, Pan XL, Wang AQ, Wang XD, Zhang T (2016) Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts. J Catal 344:184–193. https://doi.org/10.1016/j.jcat.2016.08.024

    Article  CAS  Google Scholar 

  29. Marcu IC, Tanchoux N, Fajula F, Didier T (2013) Catalytic conversion of ethanol into butanol over M-Mg-Al mixed oxide; catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) obtained from LDH precursors. Catal Lett 143:23–30. https://doi.org/10.1007/s10562-012-0935-9

    Article  CAS  Google Scholar 

  30. Aguilar-Tapia A, Delannoy L, Louis C, Han CW, Ortalan V, Zanella R (2016) Selective hydrogenation of 1,3-butadiene over bimetallic Au-Ni/TiO2 catalysts prepared by deposition-precipitation with urea. J Catal 344:515–523. https://doi.org/10.1016/j.jcat.2016.10.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 21476058, No. 21506046 and No. 21978066), Natural Science Foundation of Tianjin (Grant No. 16JCQNJC06100), Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project (Grant No. 18964308D), and Key Project of Natural Science Foundation of Hebei Province (Grant No. B2020202048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Li, S., Zhu, X. et al. Influence of noble metals on the catalytic performance of Ni/TiO2 for Ethanol Guerbet condensation. Reac Kinet Mech Cat 131, 919–933 (2020). https://doi.org/10.1007/s11144-020-01899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01899-1

Keywords

Navigation