Skip to main content
Log in

Kinetics of enzymatic cetyl palmitate production by esterification with fermented solid of Burkholderia contaminans in the presence of organic solvent

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Cetyl palmitate was produced by the esterification of palmitic acid with cetyl alcohol using n-hexane as solvent and a fermented solid of Burkholderia contaminans as catalyst. Effects of temperature (35–55 °C) and alcohol:acid molar ratio (0.5:1–2:1) on the reaction kinetics were evaluated for a fixed amount of catalyst (10 wt% related to the total mass of substrates) and a stirring speed (600 rpm) that was sufficiently high to avoid convective mass transfer limitations in the bulk phase. The temperature did not to influence the reaction rates and conversions above 90% were obtained for all temperatures after 12 h of reaction using a stoichiometric ratio (1:1) between the substrates. The prepared catalyst was recycled and reused in seven consecutive reactions of 8 h each and lost around 40% of its initial activity during the process. A Ping-Pong Bi–Bi kinetic model was proposed to represent the system reactions and was satisfactorily fitted to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shirani A, Joy T, Lager I, Yilmaz JL, Wang HL, Jeppson S, Cahoon EB, Chapman K, Stymne S, Berman D (2020) Tribol Int 146(106):234

    Google Scholar 

  2. Mutlu VN, Yilmaz S (2016) Appl Catal A Gen 522:194–200

    Article  CAS  Google Scholar 

  3. Cirillo NA, Quirrenbach CG, Corazza ML, Voll FAP (2018) Biochem Eng J 137:116–124

    Article  CAS  Google Scholar 

  4. Ieda N, Mantri K, Miyata Y, Ozaki A, Komura K, Sugi Y (2008) Ind Eng Chem Res 47:8631–8638

    Article  CAS  Google Scholar 

  5. Nishio T, Kamimura M (1988) Agric Biol Chem 52:2933–2935

    CAS  Google Scholar 

  6. Khan NR, Rathod VK (2015) Process Biochem 50:1793–1806

    Article  CAS  Google Scholar 

  7. Kovalenko G, Perminova L, Beklemishev A (2019) React Kinet Mech Catal 128:479–491

    Article  CAS  Google Scholar 

  8. Waghmare G, Mudaliar C, Rathod V (2020) React Kinet Mech Catal 129:421–441

    Article  CAS  Google Scholar 

  9. Gunstone FD (1999) J Sci Food Agric 79:1535–1549

    Article  CAS  Google Scholar 

  10. Galeano JD, Mitchell DA, Krieger N (2017) Biochem Eng J 127:77–86

    Article  CAS  Google Scholar 

  11. Krishna C (2005) Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  12. Salis A, Solinas V, Monduzzi M (2003) J Mol Catal B Enzym 21:167–174

    Article  CAS  Google Scholar 

  13. Khan NR, Jadhav SV, Rathod VK (2015) Ultrason Sonochem 27:522–529

    Article  CAS  Google Scholar 

  14. Foresti L, Ferreira M (2005) Anal Bioanal Chem 381:1408–1425

    Article  CAS  Google Scholar 

  15. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) J Mol Catal B Enzym 17:133–142

    Article  CAS  Google Scholar 

  16. Cavallaro V, Tonetto G, Ferreira M (2019) Fermentation 5:48

    Article  CAS  Google Scholar 

  17. Chowdary G, Siddalingaiya P (2005) Indian J Chem B 44:2322–2327

    Google Scholar 

  18. Bornadel A, Orellana Coca C, Borg N, Adlercreutz P, Hatti-Kaul R (2013) Biotechnol Prog 29:1422–1429

    Article  CAS  Google Scholar 

  19. Soares D, Pinto AF, Gonçalves AG, Mitchell DA, Krieger N (2013) Biochem Eng J 81:15–23

    Article  CAS  Google Scholar 

  20. Stuer W, Jaeger KE, Winkler UK (1986) J Bacteriol 168:1070–1074

    Article  CAS  Google Scholar 

  21. King EL, Altman C (1956) J Phys Chem 60:1375–1378

    Article  CAS  Google Scholar 

  22. Bainy EM, Lenzi EK, Corazza ML, Lenzi MK (2017) Therm Sci 21:41–50

    Article  Google Scholar 

  23. Friesen V, Leitoles D, Gonçalves G, Lenzi E, Lenzi M (2015) Math Probl Eng 2015:1–8

    Article  Google Scholar 

  24. Gupta R, Gupta N, Rathi P (2004) Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  25. Botton V, Piovan L, Meier HF, Mitchell DA, Cordova J, Krieger N (2018) Bioprocess Biosyst Eng 41:573–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (research Grants 309181/2019-4, 305393/2016-2 and 303287/2019-5; Project CNPQ/ CBAB 441015/2016-6) for providing financial support and scholarships. This work was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001. The authors thank David Mitchell for help with the English expression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Augusto Pedersen Voll.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.L.d., Albini, E., Corazza, M.L. et al. Kinetics of enzymatic cetyl palmitate production by esterification with fermented solid of Burkholderia contaminans in the presence of organic solvent. Reac Kinet Mech Cat 132, 139–153 (2021). https://doi.org/10.1007/s11144-020-01889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01889-3

Keywords

Navigation