Skip to main content
Log in

Optimizing the post-processing of online evolution reconstruction in quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A method of optimizing the post-processing of online evolution reconstruction in quantum communication is proposed and demonstrated for the six-state protocol. The aim of optimization is to promote the accuracy of recovering the expectation value functions of projectors, because it sets the boundary of the reconstruction errors. Before recovery, the measurement records for equal expectation value functions are integrated to increase the amount of available measurement data. After recovery, the raw recovered expectation value functions are normalized twice according to two spherical constraints on them separately to reduce the recovery errors further. The simulated results of reconstructing a time-varying qubit in quantum information show that our method is equivalent to a tenfold increment of available measurement data for online evolution reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Herklots, J.R., Strange, P.: Evolution of superoscillations in a relativistic wavepacket. J. Phys. A-Math. Theor. 53, 175302 (2020)

    Article  ADS  Google Scholar 

  2. Flurin, E., Martin, L.S., et al.: Using a recurrent neural network to reconstruct quantum dynamics of a superconducting qubit from physical observations. Phys. Rev. X 10, 011006 (2020)

    Google Scholar 

  3. Christensen, N.D., Unger, J.E., et al.: Spatial evolution of quantum mechanical states. Ann. Phys. 389, 239–249 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ralph, Jason F., Combes, Joshua, Wiseman, Howard M.: An interleaved sampling scheme for the characterization of single qubit dynamics. Quant. Inf. Process 11, 1523–1531 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sayrin, Clément, et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 10376 (2011)

    Article  Google Scholar 

  6. Gutzeit, R., Wallentowitz, S., Vogel, W.: Reconstructing the time evolution of a quantized oscillator. Phys. Rev. A 61, 062105 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Yang, Pengcheng, Min, Yu., et al.: Complete quantum-state tomography with a local random field. Phys. Rev. Lett. 124, 010405 (2020)

    Article  ADS  Google Scholar 

  8. Yin, Qi, Li, Li, Xiang, Xiao, et al.: Experimental demonstration of real-time adaptive one-qubit quantum-state tomography. Phys. Rev. A 95, 012129 (2017)

    Article  ADS  Google Scholar 

  9. Foreman, Matthew R., Favaro, Alberto, Aiello, Andrea: Optimal frames for polarization state reconstruction. Phys. Rev. Lett. 115, 263901 (2015)

    Article  ADS  Google Scholar 

  10. Steffens, A., Riofrío, C.A., Hübener, R., Eisert, J.: Quantum field tomography. New J. Phys. 16, 123010 (2014)

    Article  ADS  Google Scholar 

  11. Samuel, D., Igor, D., Jean-Michel, R., Serge, H.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 07288 (2008)

    Google Scholar 

  12. Ourjoumtsev, A., Tualle-Brouri, R., Grangier, P.: Quantum homodyne tomography of a two-photon fock state. Phys. Rev. Lett. 96, 213601 (2006)

    Article  ADS  Google Scholar 

  13. Bialczak, R.C., et al.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010)

    Article  Google Scholar 

  14. Cramer, M., Plenio, M., Flammia, S., et al.: Efficient quantum state tomography. Nat. Commun. 1, 149 (2010)

    Article  ADS  Google Scholar 

  15. Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)

    Article  ADS  Google Scholar 

  16. Dohun, K., Zhan, S.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70 (2014)

    Article  Google Scholar 

  17. Omkar, S., Srikanth, R., Banerjee, S.: Characterization of quantum dynamics using quantum error correction. Phys. Rev. A 91, 012324 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dumitrescu, Eugene, Humble, Travis S.: Direct characterization of quantum dynamics with noisy ancilla. Phys. Rev. A 92, 052329 (2015)

    Article  ADS  Google Scholar 

  19. Orsucci, Davide, Tiersch, Markus, Briegel, Hans J.: Estimation of coherent error sources from stabilizer measurements. Phys. Rev. A 93, 042303 (2016)

    Article  ADS  Google Scholar 

  20. Dumitrescu, E., Humble, T.S.: Discrimination of correlated and entangling quantum channels with selective process tomography. Phys. Rev. A 94, 042107 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012302 (2017)

    Article  ADS  Google Scholar 

  22. Lanyon, B., Maier, C., Holzäpfel, M., et al.: Efficient tomography of a quantum many-body system. Nat. Phys. 13, 1158–1162 (2017)

    Article  Google Scholar 

  23. Ryczkowski, P., Närhi, M., Billet, C., Merolla, J.-M., Genty, G., Dudley, J.M.: Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nature (2018)

  24. Yosep, K., Yong, S.T., et al.: Universal compressive characterization of quantum dynamics. Phys. Rev. Lett. 124, 210401 (2020)

    Article  Google Scholar 

  25. Zhou, H., Su, Y., Wang, R., et al.: Online evolution reconstruction from a single measurement record with random time intervals for quantum communication. Quant. Inf. Process 16, 247 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Omkar, S., Srikanth, R., Banerjee, S.: Quantum code for quantum error characterization. Phys. Rev. A 91, 052309 (2015)

    Article  ADS  Google Scholar 

  27. Zhou, Hua, Wang, Rong, Zhu, Yong, Yang, Su, Zhiyong, Xu, Wang, Jingyuan, Shen, Huiping, Li, Jianhua, Xiang, Peng, Zhang, Baofu: Representing expectation values of projectors as series for evolution reconstruction. Quant. Inf. Process 15, 5155–5165 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bruß, Dagmar: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018–3021 (1998)

    Article  ADS  Google Scholar 

  29. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and polarized light. North-Holland Publishing Company (1977)

  30. Gross, D., Liu, Y.-K., Flammia, S.T., Becker, S., Eisert, J.: Statistics of polarization mode dispersion in presence of the polarization dependent loss in single mode fibers. Opt. Commun. 169, 69–73 (1999)

    Article  Google Scholar 

  31. Gisin, N., Huttner, B.: Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Opt. Commun. 142, 119–125 (1997)

    Article  ADS  Google Scholar 

  32. Lu, P., Chen, L., Bao, X.: Statistical distribution of polarization-dependent loss in the presence of polarization-mode dispersion in single-mode fibers. IEEE Photon. Technol. Lett. 13, 451–453 (2001)

    Article  ADS  Google Scholar 

  33. Xavier, G.B., Walenta, N., Faria, G.V.D., et al.: Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation. N. J. Phys. 11, 045015 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61975238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, G., Zhu, W. et al. Optimizing the post-processing of online evolution reconstruction in quantum communication. Quantum Inf Process 19, 387 (2020). https://doi.org/10.1007/s11128-020-02894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02894-0

Keywords

Navigation