Skip to main content
Log in

Effect of Ocean Warming on Cloud Properties Over India and Adjoining Oceanic Regions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Changes in precipitation pattern have been associated with global warming and is of more importance particularly for monsoon dependent regions such as India, which receives maximum rainfall from south-west monsoon. Indian land mass is surrounded by ocean from three sides named Arabian Sea (AS), Bay of Bengal (BOB) and rest of the Indian Ocean (IO) which makes its climate more sensitive. To understand the effect of global warming, long term (1960–2017) annually averaged in-situ sea surface temperature (SST) is studied which shows an increasing trend (~ 0.11 °C/decade; P < 0.05) with higher variations (r2AS = 0.46; r2BOB = 0.43) over AS and BOB whereas comparatively lower in magnitude (~ 0.14 °C/decade; P < 0.05) with less variation (r2IO = 0.74) over IO. Rise in SST could vary evaporation rate, moisture content, cloud temperature and initial conditions required for cloud formation. To understand this heterogeneity in conjunction with seasonal variation, present study correlates cloud microphysical properties such as cloud effective radius (CER) with SST and aerosol optical depth (AOD) at high-resolution (1° × 1°) using linear interpolation method during 2001–2016. Features of north-east monsoon captures with high (~ 0.006–0.012 kg/kg) specific humidity at 850 hPa, positive correlation (~ 0.1–0.8) of SST-CER and negative correlation (~ − 0.1 to ~ − 0.8) of AOD–CER over BOB which may imply formation of bigger droplets due to presence of more moisture and less AOD. Though these patches show prominent results, it also shows scattered interpolation signifying role of other parameters on CER. Findings would be promising with more parameters, which can be used as an input data in climate models to understand regional climate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acker, J. G., & Leptoukh, G. (2007). Online analysis enhances use of NASA earth science data. Eos, Transactions American Geophysical Union, 88, 14–17.

    Google Scholar 

  • Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., & Gumley, L. E. (1998). Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research: Atmospheres, 103, 32141–32157.

    Google Scholar 

  • Aggarwal, P. K., Kumar, S. N., & Pathak. H. (2010). Impacts of climate change on growth and yield of rice and wheat in the Upper Ganga Basin. WWF report, pp 1–44.

  • Andreae, M. O. (1995). Climatic effects of changing atmospheric aerosol levels. World Survey of Climatology, 16(06), 347–398.

    Google Scholar 

  • Andreae, M. O., Jones, C. D., & Cox, P. M. (2005). Strong present-day aerosol cooling implies a hot future. Nature, 435, 1187–1190.

    Google Scholar 

  • Ansari, K., Pandithurai, G., & Kumar, V. A. (2020). Role of droplet size classes on the cloud droplet spectral dispersion as observed over the Western Ghats. Atmospheric Research, 246, 105104.

    Google Scholar 

  • Aswini, A. R., Hegde, P., Aryasree, S., Girach, I. A., & Nair, P. R. (2020). Continental outflow of anthropogenic aerosols over Arabian Sea and Indian Ocean during wintertime: ICARB-2018 campaign. Science of the Total Environment, 712, 135214.

    Google Scholar 

  • Babu, S. S., Nair, V. S., & Moorthy, K. K. (2008). Seasonal changes in aerosol characteristics over Arabian Sea and their consequence on aerosol short-wave radiative forcing: Results from ARMEX field campaign. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 820–834.

    Google Scholar 

  • Badarinath, K. V. S., Kharol, S. K., Sharma, A. R., & Prasad, V. K. (2009). Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1267–1276.

    Google Scholar 

  • Bretherton, C. S., Blossey, P. N., & Jones, C. R. (2013). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. Journal of Advances in Modeling Earth Systems, 5(2), 316–337.

    Google Scholar 

  • Budhavant, K., Andersson, A., Holmstrand, H., Bikkina, P., Bikkina, S., Satheesh, S. K., & Gustafsson, Ö. (2020). Enhanced light-absorption of black carbon in rainwater compared with aerosols over the northern Indian Ocean. Journal of Geophysical Research: Atmospheres, 125(2), e2019JD031246.

    Google Scholar 

  • Buoy (2019). Buoy-Based Wave Measurements by NexSens Technology available at https://www.nexsens.com/blog/buoy-based-wavemeasurements. Accessed 20 Sep 2019.

  • Chaboureau, J. P., Chédin, A., & Scott, N. A. (1998). Relationship between sea surface temperature, vertical dynamics, and the vertical distribution of atmospheric water vapor inferred from TOVS observations. Journal of Geophysical Research: Atmospheres, 103(D18), 23173–23180.

    Google Scholar 

  • Chan, M. A., & Comiso, J. C. (2011). Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophysical research letters, 38(24), L24813.

    Google Scholar 

  • Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., et al. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 579, 1000–1034.

    Google Scholar 

  • Chylek, P., & Coauthors. (2006). Aerosol indirect effect over the Indian Ocean. Geophysical Research Letters, 33, L06806.

    Google Scholar 

  • COBE-SST2 (2017). Data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/. Accessed 05 Nov 2019.

  • DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., et al. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107(25), 11217–11222.

    Google Scholar 

  • Dey, S., Nishant, N., Sengupta, K., & Ghosh, S. (2015). Cloud climatology over the oceanic regions adjacent to the Indian Subcontinent: Inter-comparison between passive and active sensors. International Journal of Remote Sensing, 36(3), 899–916.

    Google Scholar 

  • Earth observatory NASA (2020). Earth observatory report by NASA from their Web site at https://earthobservatory.nasa.gov/. Accessed 15 Sept 2020

  • Eck, T. F., Holben, B. N., Kim, J., Beyersdorf, A. J., Choi, M., Lee, S., et al. (2020). Influence of cloud, fog, and high relative humidity during pollution transport events in South Korea: Aerosol properties and PM2.5 variability. Atmospheric Environment, 232, 117530.

    Google Scholar 

  • Feingold, G., Koren, I., Wang, H., Xue, H., & Brewer, W. A. (2010). Precipitation-generated oscillations in open cellular cloud fields. Nature, 466(7308), 849–852.

    Google Scholar 

  • Gabriel, R., Mayol-Bracero, O. L., & Andreae, M. O. (2002). Chemical characterization of submicron aerosol particles collected over the Indian Ocean. Journal of Geophysical Research, 107, 8005.

    Google Scholar 

  • George, J., & Athira, P. (2020). Long-term changes in climatic variables over the Bharathapuzha river basin, Kerala, India. Theoretical and Applied Climatology, 142, 1–18.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Wiley.

    Google Scholar 

  • Giovanni (2019). Data provided by the Earth Data, NASA, USA. https://giovanni.gsfc.nasa.gov/. Accessed 30 Oct 2019.

  • Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182.

    Google Scholar 

  • Haroon, M. A., & Afzal, M. (2012). Spatial and temporal variability of sea surface temperature of the Arabian Sea over the past 142 years. Pakistan Journal of Meteorology, 9(17), 99–105.

    Google Scholar 

  • Harrison, R. G., Nicoll, K. A., Ambaum, M. H., Marlton, G. J., Aplin, K. L., & Lockwood, M. (2020). Precipitation modification by ionization. Physical Review Letters, 124(19), 198701.

    Google Scholar 

  • Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27, 57–75.

    Google Scholar 

  • IMD (2010). Annual report by IMD, Ministry of Earth Sciences, Govt. of India from their Web site at https://mausam.gov.in/ and https://imd.gov.in/.

  • IPCC. (2001). Climate Change 2001: The Scientific Basis. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, et al. (Eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (p. 881). Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007). Climate Change 2007: The Physical Science Basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge.

    Google Scholar 

  • ISCCP NASA (2019). ISCCP report of NASA from their Web site https://isccp.giss.nasa.gov/. Accessed 10 Dec 2019.

  • Ishii, M., Shouji, A., Sugimoto, S., & Matsumoto, T. (2005). Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. International Journal of Climatology, 25, 865–879.

    Google Scholar 

  • Kaskaoutis, D. G., Kharol, S. K., Sinha, P. R., Singh, R. P., Kambezidis, H. D., Sharma, A. R., & Badarinath, K. V. S. (2011). Extremely large anthropogenic aerosol component over the Bay of Bengal during winter season. Atmospheric Chemistry and Physics, 11, 7851–7907.

    Google Scholar 

  • Kaskaoutis, D. G., Rashki, A., Houssos, E. E., Goto, D., & Nastos, P. D. (2014). Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms. Atmospheric Environment, 94, 374–384.

    Google Scholar 

  • Kendall, M. G. (1948). Rank correlation methods https://psycnet.apa.org/record/1948-15040-000. Accessed 13 Sep 2020

  • Kennedy, J. J. (2014). A review of uncertainty in in situ measurements and data sets of sea surface temperature. Reviews of Geophysics, 52, 1–32.

    Google Scholar 

  • King, M. D., Tsay, S. C., Platnick, S. E., Wang, M., & Liou, K. N. (1997). Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase. MODIS Algorithm Theoretical Basis Document No. ATBD-MOD-05 MOD06 – Cloud product, version 5.

  • Kinne, S., et al. (2003). Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 108, 4634.

    Google Scholar 

  • Kripalani, R. H., Kulkarni, A., Sabade, S. S., & Khandekar, M. L. (2003). Indian monsoon variability in a global warming scenario. Natural Hazards, 29, 189–206.

    Google Scholar 

  • Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research, 112, D13210.

    Google Scholar 

  • Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10, 10399–10420.

    Google Scholar 

  • Lohmann, U., & Feichter, J. (2005). Global indirect aerosol effects: A review. Atmospheric Chemistry and Physics, 5, 715–737.

    Google Scholar 

  • Ma, X., Jia, H., Yu, F., & Quaas, J. (2018). Opposite aerosol index-cloud droplet effective radius correlations over major industrial regions and their adjacent oceans. Geophysical research letters, 45(11), 5771–5778.

    Google Scholar 

  • Menon, A., Levermann, A., Schewe, J., Lehmann, J., & Frieler, K. (2013). Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth System Dynamics, 4, 287–300.

    Google Scholar 

  • MISR NASA (2019). Global and seasonal aerosol distributions from MISR from their Web site at https://earthobservatory.nasa.gov/. Accessed 02 Oct 2019.

  • Mitra, A. P., & Sharma, C. (2002). Indian aerosols: Present status. Chemosphere, 49(9), 1175–1190.

    Google Scholar 

  • Muhsin, M., Sunilkumar, S. V., Ratnam, M. V., Parameswaran, K., Mohankumar, K., Mahadevan, S., et al. (2020). Contrasting features of tropospheric turbulence over the Indian peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 197, 105179.

    Google Scholar 

  • Mukherjee, T., Vinoj, V., Midya, S. K., & Adhikary, B. (2020). Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmospheric Environment, 223, 117201.

    Google Scholar 

  • Nageswararao, M. M., Sinha, P., Mohanty, U. C., & Mishra, S. (2020). Occurrence of More Heat Waves over the Central East Coast of India in the Recent Warming Era. Pure and Applied Geophysics, 177(2), 1143–1155.

    Google Scholar 

  • Nakajima, T., & King, M. D. (1990). Determination of the optical thickness and effective radius of clouds from reflected solar radiation measurement Part I: Theory. Journal of Atmospheric Science, 47, 1878–1893.

    Google Scholar 

  • Nizar, S., & Dodamani, B. M. (2019). Spatiotemporal distribution of aerosols over the Indian subcontinent and its dependence on prevailing meteorological conditions. Air Quality, Atmosphere & Health, 12(4), 503–517.

    Google Scholar 

  • Painemal, D., & Zuidema, P. (2011). Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements. Journal of Geophysical Research, 116, D24206.

    Google Scholar 

  • Peng, Y., Lohmann, U., Leaitch, R., Banic, C., & Couture, M. (2002). The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE. Journal of Geophysical Research, 107, 4106.

    Google Scholar 

  • Pincus, R. & National Center for Atmospheric Research Staff (Eds.). (2019). The Climate Data Guide: Cloud observations from MODIS. The climate data guide: Cloud observations from MODIS. https://climatedataguide.ucar.edu/climate-data/cloud-observations-modis/. Accessed 20 Dec 2019.

  • Prijith, S. S., Rajeev, K., Thampi, B. V., Nair, S. K., & Mohan, M. (2013). Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol loading over the Arabian Sea during Asian summer monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics, 105–106, 142–151.

    Google Scholar 

  • Pushpanjali, B., Subrahmanyam, M., & Murty, K. V. (2014). Sea surface temperature and find later jet variations over Arabian Sea during summer monsoon. Journal of Climatology and Weather Forecasting, 2(2), 1000111.

    Google Scholar 

  • Raju, P. V. S., Mohanty, U. C., & Bhatla, R. (2005). Onset characteristics of the southwest monsoon over India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(2), 167–182.

    Google Scholar 

  • Ramanathan, V., & Coauthors, . (2001). Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 106, 28371–28398.

    Google Scholar 

  • Rao, K. G., & Goswami, B. N. (1987). Interannual variation of sea surface temperature over the Arabian Sea and the Indian monsoon: A new perspective. American Meteorological Society, 116, 558–568.

    Google Scholar 

  • Reichle, R. H., & Liu, Q. (2014). Technical Report Series on Global Modeling and Data Assimilation, Observation-Corrected Precipitation Estimates in GEOS-5, 35, 1–18. (Available online at National Aeronautics and Space Administration, Goddard Space Flight Center Greenbelt, Maryland 20771)

  • Remer, L. A., et al. (2005). The MODIS aerosol algorithm, products, and validation. Journal of Atmospheric Science, 62, 947–973.

    Google Scholar 

  • Reynolds, R., Rayner, N., Smith, T., Stokes, D., & Wang, W. (2002). An improved in-situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625.

    Google Scholar 

  • Rhein, M., et al. (2014). Observations: Ocean. In T. F. Stocker, et al. (Eds.), Climate change 2013: The physical science basis (pp. 255–315). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenfeld, D., et al. (2016). Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proceedings of the National Academy of Sciences, 113, 5828–5834.

    Google Scholar 

  • Roxy, M. K., Ritika, K., Terray, P., & Masson, S. (2014). The curious case of Indian Ocean warming. Journal of Climate, 27, 8501–8509.

    Google Scholar 

  • Roxy, M. K., Ritika, K., Terray, P., & Masson, S. (2015). Indian Ocean warming–the bigger picture. Bulletin of the American Meteorological Society, 96, 1070–1072.

    Google Scholar 

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363.

    Google Scholar 

  • Sathaye, J., Shukla, P. R., & Ravindranath, N. H. (2006). Climate change, sustainable development and India: Global and national concerns. Current Science, 90, 314–325.

    Google Scholar 

  • Satheesh, S. K., Vinoj, V., & Moorthy, K. K. (2010). Assessment of aerosol radiative impact over oceanic regions adjacent to Indian subcontinent using multisatellite analysis. Advances in Meteorology, 2010, 1–13.

    Google Scholar 

  • Saud, T., Dey, S., Das, S., & Dutta, S. (2016). A satellite-based 13-year climatology of net cloud radiative forcing over the Indian monsoon region. Atmospheric Research, 182, 76–86.

    Google Scholar 

  • Savtchenko, A., Ouzounov, D., Ahmad, S., Acker, J., Leptoukh, G., Koziana, J., & Nickless, D. (2004). Terra and Aqua MODIS products available from NASA GES DAAC. Advances in Space Research, 34, 710–714.

    Google Scholar 

  • Schill, G. P., Froyd, K. D., Bian, H., Kupc, A., Williamson, C., Brock, C. A., et al. (2020). Widespread biomass burning smoke throughout the remote troposphere. Nature Geoscience, 13, 422–427.

    Google Scholar 

  • Shika, S., Gadhavi, H., Suman, M. N. S., Ravikrishna, R., & Gunthe, S. S. (2020). Atmospheric aerosol properties at a semi-rural location in southern India: Particle size distributions and implications for cloud droplet formation. SN Applied Sciences, 2, 1–15.

    Google Scholar 

  • Sikka, D. R. (2018). Extreme weather and seasonal events during the Indian summer monsoon and prospects of improvement in their prediction skill under India’s Monsoon Mission. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events. https://doi.org/10.1017/cbo9781107775541.026

    Article  Google Scholar 

  • Srivastava, A. K., Dey, S., & Tripathi, S. N. (2012). Aerosol characteristics over the Indo-Gangetic Basin: Implications to regional climate. Atmospheric Aerosols-Regional Characteristics-Chemistry and Physics, 10, 47782.

    Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., & Boschung, J., et la. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, p 1535.

  • Su, H., et al. (2017). Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nature Communications, 8, 1–9.

    Google Scholar 

  • Tabari, H., Somee, B. S., & Zadeh, M. R. (2011). Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 100(1), 132–140.

    Google Scholar 

  • Tang, J., et al. (2014). Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmospheric Environment, 84, 244–253.

    Google Scholar 

  • Tang, M., Cziczo, D. J., & Grassian, V. H. (2016). Interactions of water with mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation, and ice nucleation. Chemical Reviews, 116(7), 4205–4259.

    Google Scholar 

  • Tarbuck, E. J., Lutgens, F. K., & Tasa, D. (1997). The atmosphere: An introduction to meteorology, earth science. New Jersey: Prentice Hall.

    Google Scholar 

  • Tiwari, S., Mishra, A. K., & Singh, A. K. (2016). Aerosol Climatology over the Bay of Bengal and Arabian Sea Inferred from Space-Borne Radiometers and Lidar Observations. Aerosol and Air Quality Research, 16, 2855–2868.

    Google Scholar 

  • Tiwari, S., Srivastava, A. K., Singh, A. K., & Singh, S. (2015). Identification of aerosol types over Indo-Gangetic Basin: Implications to optical properties and associated radiative forcing. Environment Science Pollution Research, 22, 12246–12260.

    Google Scholar 

  • Trenberth, K. E., & Shea, D. J. (2005). Relationships between precipitation and surface temperature. Geophysical Research Letters, 32, L14703.

    Google Scholar 

  • Turner, A., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2, 587–595.

    Google Scholar 

  • Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Science, 34, 1149–1152.

    Google Scholar 

  • Vidya, P. J., Ravichandran, M., Subeesh, M. P., Chatterjee, S., & Nuncio, M. (2020). Global warming hiatus contributed weakening of the Mascarene High in the Southern Indian Ocean. Scientific Reports, 10(1), 1–9.

    Google Scholar 

  • Wang, J. (2020). Determining the most accurate program for the Mann-Kendall method in detecting climate mutation. Theoretical and Applied Climatology, 142, 847–854.

    Google Scholar 

  • Weller, E., Min, S. K., Cai, W., Zwiers, F. W., Kim, Y. H., & Lee, D. (2016). Human-caused Indo-Pacific warm pool expansion. Science advances, 2(7), e1501719.

    Google Scholar 

  • Wilks, D. (2016). “The stippling shows statistically significant grid points”: How research results are routinely overstated and over interpreted, and what to do about it. Bulletin of the American Meteorological Society, 97(12), 2263–2273.

    Google Scholar 

  • Zeng, S., Riedi, J., Trepte, C. R., Winker, D. M., & Hu, Y. X. (2014). Study of global cloud droplet number concentration with A-Train satellites. Atmospheric Chemistry and Physics, 14, 7125–7134.

    Google Scholar 

  • Zheng, Y., Bourassa, M. A., & Ali, M. M. (2020). Statistical evidence on distinct impacts of short-and long-time fluctuations of Indian Ocean surface wind fields on Indian summer monsoon rainfall during 1991–2014. Climate Dynamics, 54(5), 3053–3076.

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the online web portal of Giovanni, Earth data for providing satellite retrievals of MODIS and NCEP/NCAR Reanalysis 1 for providing MEERA 2 data as well as buoy based COBE measurements. Also, wish to thank Department of Science and Technology-Science and Engineering Research Board, India for granting Fast Track Project (ECR/2017/002000). We acknowledge Dr. Jishnu R. Gohel (Six-Sigma Black Belt), Assistant Professor, Department of Civil Engineering, Ganpat University for his contribution and support in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R., Srivastava, R. Effect of Ocean Warming on Cloud Properties Over India and Adjoining Oceanic Regions. Pure Appl. Geophys. 177, 5911–5925 (2020). https://doi.org/10.1007/s00024-020-02607-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02607-9

Keywords

Navigation