Skip to main content
Log in

Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Carotenoids are liposoluble pigments found in plant chromoplasts that are responsible for the yellow, orange, and red colors of carrot taproots. Drought is one of the main stress factors affecting carrot growth. Carotenoids play important roles in drought resistance in higher plants. In the present work, the carotenoid contents in three different-colored carrot cultivars, ‘Kurodagosun’ (orange), ‘Benhongjinshi’ (red), and ‘Qitouhuang’ (yellow), were determined by ultra-high-performance liquid chromatography (UPLC) after 15% polyethylene glycol (PEG) 6000 treatment. Real-time fluorescence quantitative PCR (RT-qPCR) was then used to determine the expression levels of carotenoid synthesis- and degradation-related genes. Increases in β-carotene content in ‘Qitouhuang’ taproots under drought stress were found to be related to the expression levels of DcPSY2 and DcLCYB. Increases in lutein and decreases in α-carotene content in ‘Qitouhuang’ and ‘Kurodagosun’ under PEG treatment may be related to the expression levels of DcCYP97A3, DcCHXE, and DcCHXB1. The expression levels of DcNCED1 and DcNCED2 in the three cultivars significantly increased, thus suggesting that NCED genes could respond to drought stress. Analysis of the growth status and carotenoid contents of carrots under PEG treatment indicated that the orange cultivar ‘Kurodagosun’ has better adaptability to drought stress than the other cultivars and that β-carotene and lutein may be involved in the stress resistance process of carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DAS:

Days after sowing

DW:

Drought weight

LCYB:

Lycopene β-cyclase

LCYE:

Lycopene ε-cyclase

NCED:

9-cis-epoxycarotenoid dioxygenase

PEG:

Polyethylene glycol

PSY:

Phytoene synthase

ROS:

Reactive oxygen species

RT-qPCR:

Real-time fluorescence quantitative

SL:

Strigolactone

UPLC:

Ultra-high-performance liquid chromatography

References

  • Ali A, Naveed NH, Shah AI, Hussain R, Jamil M, Nijabat A, Manzoor S, Faiz S, Yasin NA, Simon PW (2019) Phylogenetic relationship and screening of diverse germplam of carrot (Daucus carota) for drought resistance. Fresenius Environ Bull 28(11a):8474–8479

    CAS  Google Scholar 

  • Andre CM, Schafleitner R, Guignard C, Oufir M, Aliaga CAA, Nomberto G, Hoffmann L, Hausman JF, Evers D, Larondelle Y (2009) Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum tuberosum L.). J Agric Food Chem 57(2):599–609

    CAS  PubMed  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R (2014) Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Dew TP, Orfila C, Urwin PE (2011) Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum L.). J Agric Food Chem 59:9673–9682

    CAS  PubMed  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006a) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9(3):315–321

    CAS  PubMed  Google Scholar 

  • Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006b) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45(6):982–993

    CAS  PubMed  Google Scholar 

  • Bang H, Kim S, Leskovar D, King S (2007) Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene β-cyclase (LCYB) gene. Mol Breed 20:63–72

    CAS  Google Scholar 

  • Ben-Amotz A, Fishler R (1998) Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem 62:515–520

    CAS  Google Scholar 

  • Bramley PM (2002) Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot 53(377):2107–2113

    CAS  PubMed  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2008) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  PubMed Central  Google Scholar 

  • Chen MD, Zhu HS, Wen QF, Ma HQ, Lin YZ (2013) Determination of carotenoids in strawberry by UPLC. J Fruit Sci 30(4):706–711

    CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Phys 49:557–583

    CAS  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6(2):78–84

    CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Google Scholar 

  • Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes P, Pizarro L, Moreno JC, Handford M, Rodriguez-Concepcion M, Stange C (2012) Light-dependent changes in plastid differentiation influence carotenoid gene expression and accumulation in carrot roots. Plant Mol Biol 79:47–59

    CAS  PubMed  Google Scholar 

  • Havaux M (2013) Carotenoid oxidation products as stress signals in plants. Plant J 79(4):597–606

    PubMed  Google Scholar 

  • Herppich WB, Mempel H, Geyer M (2001) Drought- and low temperature-acclimation in carrot (Daucus carota L.) roots. J Appl Bot Food Qual 75(3):138–143

    Google Scholar 

  • Hou X, Rivers J, León P, Mcquinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21(9):792–803

    CAS  PubMed  Google Scholar 

  • Huang Y, Li MY, Wang F, Xu ZS, Huang W, Wang GL, Ma J, Xiong AS (2015) Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol Rep 42(5):893–905

    CAS  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang JY, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz P, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng ZJ, Cheng SF, Spooner D, Deynze AV, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666

    CAS  PubMed  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of betacarotene and xanthophylls in plants. Plant Cell 14:333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114(4):693–704

    CAS  PubMed  Google Scholar 

  • Just BJ, Santos CAF, Yandell BS, Simon PW (2009) Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticated × wild carrot cross. Theor Appl Genet 119(7):1155–1169

    PubMed  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS (2012) Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweet potato. Phytochemistry 74:69–78

    CAS  PubMed  Google Scholar 

  • Koltai H, Kapulnik Y (2011) Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signal Behav 6(1):37–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HY, Li DH (2014) Expression of AtP5CS1 gene enhanced drought tolerance of transgenic Brassica oleracea plants. Plant Physiol J 50(7):1009–1013

    CAS  Google Scholar 

  • Luby CH, Maeda HA, Goldman IL (2014) Genetic and phenological variation of tocochromanol (vitamin E) content in wild (Daucus carota L. var. carota) and domesticated carrot (D. carota L. var. sativa). Hortic Res 1:15

    Google Scholar 

  • Ma J, Xu ZS, Tan GF, Wang F, Xiong AS (2017) Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochim Biophys Sin 49(9):817–826

    CAS  PubMed  Google Scholar 

  • Ma J, Li JW, Xu ZS, Wang F, Xiong AS (2018) Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim Biophys Sin 50(5):481–490

    CAS  PubMed  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15(10):2331–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadkhani N, Heidari R (2007) Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pak J Biol Sci 10(22):4022–4028

    CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci 166(4):1105–1110

    Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94(25):14162–14167

    CAS  PubMed  PubMed Central  Google Scholar 

  • North HM, Almeida AD, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50(5):810–824

    CAS  PubMed  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep 1(1):37–48

    Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin F, Hartmann L, Dubois-Laurent C, Welsch R, Huet S, Hamama L, Briard M, Peltier D, Gagne S, Geoffriau E (2017) Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues. Planta 245(4):737–747

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) New mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Google Scholar 

  • Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS (2019) Advances in research on the carrot, animportant root vegetable in the Apiaceaefamily. Hortic Res 6:69

    PubMed  PubMed Central  Google Scholar 

  • Quinlan RF, Shumskaya M, Bradbury LMT, Beltrán J, Ma CH, Kennelly EJ, Wurtzel ET (2012) Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiol 160:204–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaq M, Akram NA, Ashraf M, Hira N, Al-Qurainy F (2017) Interactive effect of drought and nitrogen on growth, some key physiological attributes and oxidative defense system in carrot (Daucus carota L.) plants. Sci Hortic 225:373–379

    CAS  Google Scholar 

  • Reid JB, Gillespie RN (2017) Yield and quality responses of carrots (Daucus carota L.) to water deficits. N Z J Crop Hortic Sci 45(4):299–312

    Google Scholar 

  • Riggi E, Patanè C, Ruberto G (2008) Content of carotenoids a different ripening stages in processing tomato in relation to soil water availability. Aust J Agric Res 59:348–353

    CAS  Google Scholar 

  • Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarías L (2013) A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J Exp Bot 64(14):4461–4478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97(20):11102–11107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rys M, Szaleniec M, Skoczowski A, Stawoska I, Janeczko A (2015) FT-Raman spectroscopy as a tool in evaluation the response of plants to drought stress. Open Chem 13:1091–1100

    CAS  Google Scholar 

  • Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JAD (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim Biophys Acta 1619(1):9–14

    CAS  PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hortic 185:68–75

    CAS  Google Scholar 

  • Shi YM, Liu PP, Xia YZ, Wei P, Li WZ, Zhang W, Chen X, Cao PJ, Xu YL, Jin LF, Li F, Luo ZP, Wei CY, Zhang JF, Xie XD, Qu LB, Yang J, Lin FC, Wang R (2015a) Downregulation of the lycopene ε-cyclase gene confers tolerance to salt and drought stress in Nicotiana tabacum. Acta Physiol Plant 37:210

    Google Scholar 

  • Shi YM, Guo JG, Zhang W, Jin LF, Liu PP, Chen X, Li F, Wei P, Li ZF, Li WZ, Wei CY, Zheng QX, Chen QS, Zhang JF, Lin FC, Qu LB, Snyder JH, Wang R (2015b) Cloning of the lycopene β-cyclase gene in Nicotiana tabacum and its overexpression confers salt and drought tolerance. Int J Mol Sci 16(12):30438–30457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, Stange C (2018) Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot 69(16):4113–4126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147

    CAS  PubMed  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35(1):44–56

    CAS  PubMed  Google Scholar 

  • Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D (2003) Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147–157

    CAS  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28(4):663–692

    CAS  PubMed  Google Scholar 

  • Wang JJ, Ye WW, Wang DL, Fan WL, Wang S (2011) Germination characteristics and comprehensive evaluation of drought resistance of 41 accessions of cotton germplasm at seed germination stage under PEG-6000 stress. J Plant Genet Resour 12(6):840–846

    CAS  Google Scholar 

  • Wang GL, Jia XL, Xu ZS, Wang F, Xiong AS (2015) Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Mol Gen Genomics 290(4):1379–1391

    CAS  Google Scholar 

  • Wang GL, Que F, Xu ZS, Wang F, Xiong AS (2017) Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma 254:839–848

    CAS  PubMed  Google Scholar 

  • Wang YH, Li T, Zhang RR, Khadr A, Tian YS, Xu ZS, Xiong AS (2020) Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors. Protoplasma 257:949–963

    CAS  PubMed  Google Scholar 

  • Xu ZS, Huang Y, Wang F, Song X, Wang GL, Xiong AS (2014) Transcript pro-filing of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:262

    PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Xiong AS (2019) Changing carrot color: insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification. Plant Physiol 181(1):195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Yang QQ, Feng K, Yu X, Xiong AS (2020) DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol J 18:1585–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Leng P, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166(12):1241–1252

    CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (31872098), the Open Fund of the State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University (ZW201905), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ASX and RRZ. Performed the experiments: RRZ, YHW, and TL. Analyzed the data: RRZ, YHW, TL, GFT, JPT, XJS, ZSX, and YST. Contributed reagents/materials/analysis tools: ASX. Wrote the paper: RRZ. Revised the paper: ASX and YHW. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai-Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 9.69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RR., Wang, YH., Li, T. et al. Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots. Protoplasma 258, 379–390 (2021). https://doi.org/10.1007/s00709-020-01570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01570-5

Keywords

Navigation