Skip to main content
Log in

Compact and strong window core steering magnets with homogeneous dipole field

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 09 November 2021

This article has been updated

Abstract

A typical axially compact, square window core steering magnet has a very small 2D good field region (GFR) of 18% of the iron core aperture. It is weak with 85% of its dipole in the fringes. Increasing the current fed area (coil) to increase the dipole strength lowers the good field zone. Some novel and simple coil shapes can expand their 2D/3D GFR to 94/40% of the iron aperture. They are axially compact, i.e., stronger with 60–65% of the dipole in fringes. The reduction in error sextupole field is more profound. A novel 2D coil shape with vanished 2D sextupole proves the concept. For axially short cores, a gap between the coil and the iron aperture can increase the 3D sextupole, missing in 2D simulations. A new asymmetric one-axis steering magnet core and coil shape with high dipole field and homogeneity is also given. The new, practical coil shapes significantly improve the dipole field homogeneity and strength of these magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. S Russenschuck, Field computation for accelerator magnets (Wiley-VCH Verlag GmbH&Co, KGa, Weinheim), ISBN: 978-3-527-40769-9, Chapter 1, pp. 10–12

  2. Th Zickler, CERN Accelerator School on Magnets Proceedings, CERN-2010-004, 30 November 2010, p. 78

  3. N Marks, CAS, Baden bei Wien, September 2004, Lecture on Conventional Magnets or Accelerators, https://cas.web.cern.ch/sites/cas.web.cern.ch/files/lectures/baden-2004/marks-3.pdf, pp. 42–43

  4. J Tanabe, SLAC-R-754 June 2005, pp. 252–254

  5. P R Sarma, N Ibomcha and T K Bhandari, Rev. Sci. Instrum.  76, 013302 (2005),https://doi.org/10.1063/1.1923779

    Article  ADS  Google Scholar 

  6. I Novitsky et al, IEEE Trans. Appl. Supercond. 11(1), 2276 (2001)

    Article  ADS  Google Scholar 

  7. A Abreu et al, IEEE Trans. Appl. Supercond.  9(2), 705 (1999)

    Article  ADS  Google Scholar 

  8. C Battle et al, IEEE Trans. Appl. Supercond. 10(1), 334 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. R Gupta, S Russenschuk and S Ramberger, IEEE Trans. Appl. Supercond.  10(1), 326 (2000)

    Article  ADS  Google Scholar 

  10. R Gupta et al, Presented at the 18th International Conference on Magnet Technology (MT-18) (Morioka City, Japan, 20–24 October 2003)

  11. A Kumar et al, Proceedings of InPAC11 (IUAC, New Delhi, 2011)

    Google Scholar 

  12. S Chandran et al, Pramana – J. Phys. 93: 85 (2019)

    Google Scholar 

  13. B Biswas, Rev. Sci. Instrum. 84, 10331 (2013), doi: https://doi.org/10.1063/1.4824359

    Article  Google Scholar 

  14. B Biswas, Pramana – J. Phys.  86, 1299 (2016)

    Google Scholar 

  15. S Chandran and B Biswas, Nucl. Instrum. Meth. Phys. Res. A 798, 121 (2015)

    Article  ADS  Google Scholar 

  16. K K Pant et al, Curr. Sci. 114(2), 367 (2018)

    Article  Google Scholar 

  17. A Wolski, CERN Accelerator School on Magnets Proceedings, CERN-2010-004, 30 November 2010, pp. 7–16

  18. N Marks, CAS, Baden bei Wien, September 2004, Lecture on Conventional Magnets or Accelerators, https://cas.web.cern.ch/sites/cas.web.cern.ch/files/lectures/baden-2004/marks-3.pdf, p. 50.

  19. J E Draper, Rev. Sci. Instrum. 37, 1390 (1966), https://doi.org/10.1063/1.1719989

    Article  ADS  Google Scholar 

  20. Los Alamos Accelerator Code Group, Poisson/Superfish Reference Manual, LA-UR-87-126, 1987

  21. ANSYS user guide, \(\langle \)http://www.ansys.com\(\rangle \) for ANSYS/EMAG (2012)

  22. D B Barlow, R H Krauss Jr, C T Lobb and M T Menzel, Nucl. Instrum. Meth. Phys. Res. A  313, 311 (1992)

    Article  ADS  Google Scholar 

  23. S A Kahn, G Flanagan and R P Johnson, Proceedings of IPAC10, Kyoto, Japan (Muons Inc., Batavia, IL 60510, USA) pp. 1569–1571

  24. www.danfysik.com

  25. B Biswas, Oral presentation on “Development of in-vacuum mirror system, compact magnets and undulator beam line for CUTE–FEL”, Proceedings of InPAC09 (RRCAT, Indore, 2009)

    Google Scholar 

Download references

Acknowledgements

The author is extremely thankful to Kailash Ruwali for the rotating coil measurements and Pranabesh K Thander for guidance to use a Linux server for the FEA work. He also thanks Kailash Ruwali for the quadrupole data, Subrata Das for the dipole data and Kamal K Pant for his encouragement and support for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, B. Compact and strong window core steering magnets with homogeneous dipole field. Pramana - J Phys 94, 155 (2020). https://doi.org/10.1007/s12043-020-02013-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02013-9

Keywords

PACS Nos

Navigation