Skip to main content
Log in

Paranormal measurable operators affiliated with a semifinite von Neumann algebra. II

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \({{\mathcal {M}}}\) be a von Neumann algebra of operators on a Hilbert space \({\mathcal {H}}\) and \(\tau \) be a faithful normal semifinite trace on \(\mathcal {M}\). Let \(t_\tau \) be the measure topology on the \(*\)-algebra \(S(\mathcal {M},\tau )\) of all \(\tau \)-measurable operators. We define three \(t_\tau \)-closed classes \({{\mathcal {P}}}_1\), \({{\mathcal {P}}}_2\) and \({{\mathcal {P}}}_3\) of \(\tau \)-measurable operators and investigate their properties. The class \({{\mathcal {P}}}_2\) contains \({{\mathcal {P}}}_1\cup {{\mathcal {P}}}_3\). If a \(\tau \)-measurable operator T is hyponormal, then T lies in \({{\mathcal {P}}}_1\cap {{\mathcal {P}}}_3\); if an operator T lies in \({{\mathcal {P}}}_3\), then \(UTU^*\) belongs to \({{\mathcal {P}}}_3\) for all isometries U from \({{\mathcal {M}}}\). If a bounded operator T lies in \(\mathcal {P}_1\cup {{\mathcal {P}}}_3\) then T is normaloid. If an operator \(T\in S(\mathcal {M},\tau )\) is p-hyponormal with \(0<p\le 1\) then \(T\in \mathcal {P}_1\). If \(\mathcal {M}=\mathcal {B}(\mathcal {H})\) and \(\tau =\text { tr}\) is the canonical trace, then the class \( \mathcal {P}_1 \) (resp., \({{\mathcal {P}}}_3\)) coincides with the set of all paranormal (resp., \(*\)-paranormal) operators on \(\mathcal {H}\). Let \(A, B \in S({{\mathcal {M}}},\tau ) \) and A be p-hyponormal with \(0<p\le 1\). If AB is \(\tau \)-compact then \(A^*B\) is \(\tau \)-compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluthge, A.: On \(p\)-hyponormal operators for \(0<p<1\). Integral Equ. Oper. Theory 13(3), 307–315 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Antonevich, A.B.: Linear Fnctional Equations. Operator Approach. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  3. Arora, S.C., Thukral, J.K.: On a class of operators. Glas. Mat. Ser. III 21(2), 381–386 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Arora, S.C., Thukral, J.K.: \(M^*\)-Paranormal operators. Glas. Mat. Ser. III 22(1), 123–129 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Bekjan, T.N., Dauitbek, D.: Submajorization inequalities of \(\tau \)-measurable operators for concave and convex functions. Positivity 19(2), 341–345 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bikchentaev, A.M.: Paranormal measurable operators affiliated with a semifinite von Neumann algebra. Lobachevskii J. Math. 39(6), 731–741 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bikchentaev, A.M., Abed, S.A.: Paranormal elements in normed algebra. Russ. Math. 62(5), 10–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bikchentaev, A.M.: Two classes of \(\tau \)-measurable operators affiliated with a von Neumann algebra. Russ. Math. 61(1), 76–80 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bikchentaev, A.M.: On \(\tau \)-compactness of products of \(\tau \)-measurable operators. Int. J. Theor. Phys. 56(12), 3819–3830 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bikchentaev, A.M.: Integrable products of measurable operators. Lobachevskii J. Math. 37(4), 397–403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bikchentaev, A.M.: On idempotent \(\tau \)-measurable operators affiliated to a von Neumann algebra. Math. Notes 100(3–4), 515–525 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bikchentaev, A.M.: On normal \(\tau \)-measurable operators affiliated with semifinite von Neumann algebras. Math. Notes 96(3–4), 332–341 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Bikchentaev, A.M.: Minimality of the convergence in measure topologies on finite von Neumann algebras. Math. Notes 75(3–4), 315–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dodds, P.G., de Pagter, B.: Normed Köthe spaces: a non-commutative viewpoint. Indag. Math. (N.S.) 25(2), 206–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dodds, P.G., Dodds, T.K.-Y., de Pagter, B.: Noncommutative Köthe duality. Trans. Am. Math. Soc. 339(2), 717–750 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Fack, T., Kosaki, H.: Generalized \(s\)-numbers of \(\tau \)-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Furuta, T.: On the class of paranormal operators. Proc. Jpn. Acad. 43(7), 594–598 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Furuta, T.: \(A\ge B\ge 0\) assures \((B^rA^pB^r)^{1/q}\ge B^{(p+2r)/q}\) for \(r\ge 0\), \(p\ge 0\), \(q\ge 1\) with \((1+2r)q\ge p+2r\). Proc. Am. Math. Soc. 101(1), 85–88 (1987)

    MATH  Google Scholar 

  19. Gohberg, I.C., Kreǐn, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Mathem. Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I. (1969)

  20. Halmos, P.R.: A Hilbert Space Problem Book. D. van Norstand Company Inc., Princeton (1967)

    MATH  Google Scholar 

  21. Hansen, F.: An operator inequality. Math. Ann. 246(3), 249–250 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hansen, F., Pedersen, G.K.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258(3), 229–241 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Istrăţescu, V., Saitô, T., Yoshino, T.: On a class of operators. Tôhoku Math. J. (2) 18(4), 410–413 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. Istrăţescu, V.: On some hyponormal operators. Pac. J. Math. 22(3), 413–417 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kubrusly, C.S.: Hilbert Space Operators. A Problem Solving Approach. Birkhäuser Boston Inc., Boston (2003)

    Book  MATH  Google Scholar 

  26. Lord, S., Sukochev, F., Zanin, D.: Singular Traces. Theory and Applications, de Gruyter Studies in Mathematics, Vol. 46 (2013)

  27. Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15(2), 103–116 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Patel, S.M.: A note on \(p\)-hyponormal operators for \(0<p<1\). Integral Equ. Oper. Theory 21(4), 498–503 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Ramesh, G.: Absolutely norm attaining paranormal operators. J. Math. Anal. Appl. 465(1), 547–556 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rashid, M.H.M.: Some results on totally \(n\)-\(*\)-paranormal operators. Gulf J. Math. 5(3), 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Segal, I.E.: A non-commutative extension of abstract integration. Ann. Math. (2) 57(3), 401–457 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stroh, A., West, P.G.: \(\tau \)-compact operators affiliated to a semifinite von Neumann algebra. Proc. Roy. Irish Acad. Sect. A 93(1), 73–86 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Tikhonov, O.E.: Continuity of operator functions in topologies connected with a trace on a von Neumann algebra. Sov. Math. (Iz. VUZ) 31(1), 110–114 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, Ministry of Education and Science of the Russian Federation Project 1.13556.2019/13.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airat Bikchentaev.

Additional information

This paper is dedicated to Professor P. G. Ovchinnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A. Paranormal measurable operators affiliated with a semifinite von Neumann algebra. II. Positivity 24, 1487–1501 (2020). https://doi.org/10.1007/s11117-020-00744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-020-00744-y

Keywords

Mathematics Subject Classification

Navigation