Skip to main content
Log in

A general theory of tensor products of convex sets in Euclidean spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We introduce both the notions of tensor product of convex bodies that contain zero in the interior, and of tensor product of 0-symmetric convex bodies in Euclidean spaces. We prove that there is a bijection between tensor products of 0-symmetric convex bodies and tensor norms on finite dimensional spaces. This bijection preserves duality, injectivity and projectivity. We obtain a formulation of Grothendieck‘s Theorem for 0-symmetric convex bodies and use it to give a geometric representation (up to the \(K_G\)-constant) of the Hilbertian tensor product. We see that the property of having enough symmetries is preserved by these tensor products, and exhibit relations with the Löwner and the John ellipsoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. American Mathematical Society, Providence, RI (2015)

  2. Aubrun, G., Szarek, S.: Tensor products of convex sets and the volume of separable states on n qudits. Phys. Rev. A 73(2), 022109 (2006)

    Article  Google Scholar 

  3. Aubrun, G., Szarek, S.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory. American Mathematical Soc. (2017)

  4. Behrends, E., Wittstock, G.: Tensorprodukte und simplexe. Invent. Math. 11, 188–198 (1970)

    Article  MathSciNet  Google Scholar 

  5. Davies, E., Vincent-Smith, G.: Tensor products, infinite products, and projective limits of Choquet simplexes. Math. Scand. 22(1), 145–164 (1969)

    MathSciNet  MATH  Google Scholar 

  6. Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North Holland Mathematics Studies, Amsterdam (1992)

    MATH  Google Scholar 

  7. Diestel, J., Fourie, J., Swart, J.: The Metric Theory of Tensor Products. American Mathematical Society, Providence, RI (2008). Grothendieck’s résumé revisited

  8. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  9. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: STOC’09-Proceedings of the 2009 ACM International Symposium on Theory of Computing, pp. 39–44 (2009)

  10. Fernández-Unzueta, M., Higueras-Montaño, L.: Convex bodies associated to tensor norms. J. Convex Anal. 26, 4 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8, 1–79 (1953)

    MathSciNet  MATH  Google Scholar 

  12. Hulanicki, A., Phelps, R.: Some applications of tensor products of partially-ordered linear spaces. J. Funct. Anal. 2, 177–201 (1968)

    Article  MathSciNet  Google Scholar 

  13. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers Inc, New York (1948)

  14. Johnson, W., Lindenstrauss, J.: Basic concepts in the geometry of banach spaces. In: Johnson, W., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, vol. 1, pp. 1–84. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  15. Kadison, R., Ringrose, J.: Fundamentals of the Theory of Operator Algebras. Academic Press, Edinburgh (1983)

    MATH  Google Scholar 

  16. Kakutani, S.: Some characterizations of Euclidean space. Jap. J. Math. 16, 93–97 (1939)

    Article  MathSciNet  Google Scholar 

  17. Khot, S., Naor, A.: Grothendieck-type inequalities in combinatorial optimization. Commun. Pure Appl. Math. 65(7), 992–1035 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lazar, A.: Affine products of simplexes. Math. Scand. 22, 165–175 (1968)

    Article  MathSciNet  Google Scholar 

  19. Minkowski, H.: Geometrie der Zahlen 1910. Teubner, Leipzig (1927)

    Google Scholar 

  20. Namioka, I., Phelps, R.: Tensor products of compact convex sets. Pac. J. Math. 31(2), 469–480 (1969)

    Article  MathSciNet  Google Scholar 

  21. Pietsch, A.: Operator Ideals. North-Holland Publishing Company, Amsterdam (1980)

    MATH  Google Scholar 

  22. Pisier, G.: Factorization of linear operators and Geometry of Banach spaces. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)

  23. Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. 49(2), 237–323 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer, Berlin (2002)

    Book  Google Scholar 

  25. Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  26. Semadeni, Z.: Categorical methods in convexity. In: Proceedings of Colloquium on Convexity (Copenhagen, 1965), pp. 281–307. Kobenhavns Univ. Mat. Inst., Copenhagen (1967)

  27. Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Longman Sc & Tech, Harlow (1989)

    MATH  Google Scholar 

  28. Velasco, M.: Linearization functors on real convex sets. SIAM J. Optim. 25(1), 1–27 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa F. Higueras-Montaño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACyT), grant number 284110. The second named author was supported by CONACyT scholarship for Ph.D. studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Unzueta, M., Higueras-Montaño, L.F. A general theory of tensor products of convex sets in Euclidean spaces. Positivity 24, 1373–1398 (2020). https://doi.org/10.1007/s11117-020-00736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-020-00736-y

Keywords

Mathematics Subject Classification

Navigation