Skip to main content
Log in

Plasmonic Edge, Centre and Breathing Modes in Two-Dimensional Disks

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recently, plasmonic edge and breathing modes are obtained by electron energy loss spectroscopy in aluminum nanotriangles and silver nanodisks. In this article, based on the free-electron gas model and the linear response theory, we have derived the energy absorption spectrum and charge distributions under applied external fields to study the plasmons sustained by two-dimensional disks. Plasmonic edge, center and breathing modes are further observed by the charge distributions. In addition, with the help of energy absorption spectrum, the evolutionary characteristics of plasmon modes with the system parameters such as size, atomic separation and electron filling are further confirmed, and the effect of different applied external fields on plasmon excitations is displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Advanced Materials 16:1685–1706

    Article  CAS  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Kirakosyan AS, Stockman MI, Shahbazyan TV (2016) Surface plasmon lifetime in metal nanoshells. Physical Review B 94:155429

    Article  Google Scholar 

  4. Mahan GD (2018) Lifetime of surface plasmons. Physical Review B 97:075405

    Article  CAS  Google Scholar 

  5. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Letters 6:2060–2065

    Article  CAS  Google Scholar 

  6. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nature Photonics 1:641–648

    Article  CAS  Google Scholar 

  7. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nature Photonics 3:388–394

    Article  CAS  Google Scholar 

  8. Yang A, Hoang TB, Dridi M, Deeb C, Mikkelsen MH, Schatz GC, Odom TW (2015) Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications 6:1–7

    Google Scholar 

  9. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 8:95–103

    Article  CAS  Google Scholar 

  10. Atwater HA, Polman A (2011) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  Google Scholar 

  11. Wu B, Ueno K, Yokota Y, Sun K, Zeng H, Misawa H (2012) Enhancement of a two-photon-induced reaction in solution using light-harvesting gold nanodimer structures. The Journal of Physical Chemistry Letters 3:1443–1447

    Article  CAS  Google Scholar 

  12. Zhong Y, Ueno K, Mori Y, Shi X, Oshikiri T, Murakoshi K, Misawa H (2014) Plasmon Assisted Water Splitting Using Two Sides of the Same SrTiO3 Single Crystal Substrate: Conversion of Visible Light to Chemical Energy. Angewandte Chemie International Edition 53:10350–10354

    Article  CAS  Google Scholar 

  13. Hwang EH, Sarma SD (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B 75:205418

    Article  Google Scholar 

  14. McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Physical Review Letters 103:097403

    Article  Google Scholar 

  15. Wang BJ, Xu Y, Ke SH (2012) Plasmon excitations in sodium atomic planes: A time-dependent density functional theory study. The Journal of Chemical Physics 137:054101

    Article  Google Scholar 

  16. Guidez EB, Aikens CM (2012) Theoretical analysis of the optical excitation spectra of silver and gold nanowires. Nanoscale 4:4190–4198

    Article  CAS  Google Scholar 

  17. Guidez EB, Aikens CM (2014) Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles. Nanoscale 6:11512–11527

    Article  CAS  Google Scholar 

  18. Wang Y, Yu YB (2017) Plasmon excitations in doped square-lattice atomic clusters. International Journal of Modern Physics B 31:1750233

    Article  CAS  Google Scholar 

  19. Chen J, Cheng XL, Zhang H (2019) Plasmon excitation in BC3 nanostructures from first principles. Plasmonics 14:109–116

    Article  CAS  Google Scholar 

  20. Yan L, Guan M, Meng S (2018) Plasmon-induced nonlinear response of silver atomic chains. Nanoscale 10:8600–8605

    Article  CAS  Google Scholar 

  21. Yan J, Yuan Z, Gao S (2007) End and central plasmon resonances in linear atomic chains. Physical Review Letters 98:216602

    Article  Google Scholar 

  22. Yan J, Gao S (2008) Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons. Physical Review B 78:235413

    Article  Google Scholar 

  23. Chen J, Lai LQ, Yang X, Liu QH, Yu YB (2020) On the existence of a local dipolar plasmon mode in doped small gold atomic arrays. Physical Review B 101:085421

    Article  CAS  Google Scholar 

  24. Chang YC, Wang SM, Chung HC, Tseng CB, Chang SH (2012) Observation of absorption-dominated bonding dark plasmon mode from metal Cinsulator Cmetal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano 6:3390–3396

    Article  CAS  Google Scholar 

  25. Sun Q, Yu H, Ueno K, Kubo A, Matsuo Y, Misawa H (2016) Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano 10:3835–3842

    Article  CAS  Google Scholar 

  26. Yu YQ, Yu YB, Xue HJ, Wang YX, Chen J (2016) Plasmon excitations in two-dimensional atomic cluster systems. Physica B: Condensed Matter 496:26–33

    Article  CAS  Google Scholar 

  27. Wu RL, Yu Y, Xue HJ, Hu HF (2014) Quadrupole plasmon excitations in confined one-dimensional systems. EPL (Europhysics Letters) 108:27001

    Article  Google Scholar 

  28. Xue HJ, Hao DP, Zhang M, Wang XM (2017) Plasmon excitations in the dimers formed by atom chains. Physica E: Low-dimensional Systems and Nanostructures 86:292–296

    Article  CAS  Google Scholar 

  29. Xue HJ, Wu RL, Hu CX, Zhang M (2018) The study of the plasmon modes of square atomic clusters based on the eigen-oscillation equation of charge under the free-electron gas model. International Journal of Modern Physics B 32:1850139

    Article  CAS  Google Scholar 

  30. Gao S, Yuan Z (2005) Emergence of collective plasmon excitation in a confined one-dimensional electron gas. Physical Review B 72:121406

    Article  Google Scholar 

  31. Muniz RA, Haas S, Levi AFJ, Grigorenko I (2009) Plasmonic excitations in tight-binding nanostructures. Physical Review B 80:045413

    Article  Google Scholar 

  32. Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Dark plasmonic breathing modes in silver nanodisks. Nano Letters 12:5780–5783

    Article  CAS  Google Scholar 

  33. Campos A, Arbouet A, Martin J, Gerard D, Proust J, Plain J, Kociak M (2017) Plasmonic breathing and edge modes in aluminum nanotriangles. Acs Photonics 4:1257–1263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China under Grants No. 11847146 and No. 11947080. The work is also supported by Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 2018JQ1091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-jie Xue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Hj., Jin, Fc., Wei, LM. et al. Plasmonic Edge, Centre and Breathing Modes in Two-Dimensional Disks. Plasmonics 16, 471–476 (2021). https://doi.org/10.1007/s11468-020-01306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01306-4

Keywords

Navigation