Skip to main content
Log in

Enhanced RI Sensitivity and SERS Performances of Individual Au Nanobipyramid Dimers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Both the plasmon refractive index (RI) sensitivity and SERS performance of individual Au nanobipyramid (NBP) dimers are numerically investigated by finite element method (FEM). Each of the fractional shift of LSPR peak wavelength \(\lambda_{LSPR}\) of Au NBP dimer’s longitudinal dipole mode and the corresponding RI sensitivity factor \(S\) is unveiled to obey the universal “plasmon ruler” only for the scaled gap size being larger than 0.10, which is well elucidated in terms of the fractional shift of enhanced \(\left| E \right|_{\max }\) around the gap region. The maximum \(S\) and SERS enhancement factor G at gap distances 2 nm of Au NBP dimer are demonstrated to reach 618 nm RIU−1 and 4.5 × 1011, respectively, providing excellent plasmon RI sensitivity and SERS substrates. The enhanced S and G of Au NBP dimer than those of Au nanorod and nanoellipsoid counterparts under the same incident light and dimer geometry configurations are presented and discussed as well, respectively. The present work provides helpful clues for future designing Au dimer-based SERS substrates and LSPR RI sensors for chemical/biological sensing and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chow TH, Li NN, Bai XP, Zhuo XL, Shao L, Wang JF (2019) Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Acc Chem Res 52(8):2136–2146

    CAS  PubMed  Google Scholar 

  2. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393

    CAS  Google Scholar 

  3. Kou XS, Zhang SZ, Tsung CK, Yeung MH, Shi QH, Stucky GD, Sun LD, Wang JF, Yan CH (2006) Growth of gold nanorods and bipyramids using CTEAB surfactant. J Phys Chem B 110(33):16377–16383

    CAS  PubMed  Google Scholar 

  4. Kou XS, Ni WH, Tsung CK, Chan K, Lin HQ, Stucky GD, Wang JF (2013) Growth of gold bipyramids with improved yield and their curvature-directed oxidation. Small 3(12):2103–2113

    Google Scholar 

  5. Guo ZR, Wan Y, Wang M, Xu L, Lu X, Yang G, Fang K, Gu N (2012) High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route. Colloids Surf A 414:492–497

    CAS  Google Scholar 

  6. Liu WJ, Liu D, Zhu ZN, Han B, Gao Y, Tang ZY (2014) DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids. Nanoscale 6(9):4498–4502

    CAS  PubMed  Google Scholar 

  7. Sánchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzán LM (2017) High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J Amer Chem Soc 139(1):107–110

    Google Scholar 

  8. Lee JH, Gibson KJ, Chen G, Weizmann Y (2015) Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat Commun 6:7571

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Q, Zhuo XL, Li S, Ruan QF, Xu QH, Wang JF (2015) Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv Opt Mater 3(6):801–812

    CAS  Google Scholar 

  10. Wang WH, Yu P, Zhong ZQ, Tong X, Liu TJ, Li YB, Ashaller E, Chen HY, Wu J, Wang ZM (2018) Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nanobipyramids. Nanotechnology 29(35):355402

    PubMed  Google Scholar 

  11. Qi Y, Zhao J, Weng GJ, Li JJ, Li X, Zhu J, Zhao JW (2018) A colorimetric/SERS dual-mode sensing method for the detection of mercury(ii) based on rhodanine-stabilized gold nanobipyramids. J Mater Chem C 6(45):12283–12293

    CAS  Google Scholar 

  12. Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15(7):15684–15716

    PubMed  Google Scholar 

  13. Amendola V, Pilot R, Frasconi M, Marago OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29(20):203002

    PubMed  Google Scholar 

  14. Pardehkhorram R, Bonaccorsi S, Zhu HH, Goncales VR, Wu YF, Liu JQ, Lee NA, Tilley RD, Gooding JJ (2019) Intrinsic and well-defined second generation hot spots in gold nanobipyramids versus gold nanorods. Chem Commun 55(53):7707–7710

    Google Scholar 

  15. Malachosky EW, Guyotsionnest P (2014) Gold bipyramid nanoparticle dimers. J Phys Chem C 118(12):6405–6412

    CAS  Google Scholar 

  16. Lee S, Kumar P, Hu YW, Cheng J, Irudayaraj J (2015) Graphene laminated gold bipyramids as sensitive detection platforms for antibiotic molecules. Chem Commun 51(85):15494–15497

    CAS  Google Scholar 

  17. Jain PK, Huang WY, Elsayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088

    CAS  Google Scholar 

  18. Jain PK, Elsayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers. J Phys Chem C 112(13):4954–4960

    CAS  Google Scholar 

  19. Hooshmand N, Oneil D, Asiri AM, El-Sayed M (2014) Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: A DDA simulation. J Phys Chem A 118(37):8338–8344

    CAS  PubMed  Google Scholar 

  20. Bonyar A, Csarnovics I, Szanto G (2018) Simulation and characterization of the bulk refractive index sensitivity of coupled plasmonic nanostructures with the enhancement factor. Photon Nanostruc Fund Appl 31:1–7

    Google Scholar 

  21. Ren YT, Qi H, Chen Q, Wang SL, Ruan LM (2017) Localized surface plasmon resonance of nanotriangle dimers at different relative positions. J Quant Spectrosc Radiat Transf 199:45–51

    CAS  Google Scholar 

  22. Shi QQ, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng WL (2016) Two-dimensional bipyramid plasmonic nanoparticle liquid crystalline superstructure with four distinct orientational packing orders. ACS Nano 10(1):967–976

    CAS  PubMed  Google Scholar 

  23. Zhou XY, Li RY, Wu XF, Li ZJ (2014) A sensitive, switchable and biocompatible surface enhanced Raman scattering-fluorescence dual mode probe using bipyramid gold nanocrystal-gold nanoclusters for high-throughput biodetection. Anal Methods 6(9):2862–2869

    CAS  Google Scholar 

  24. Zhu XZ, Yip HK, Zhuo XL, Jiang RB, Chen JL, Zhu XM, Yang Z, Wang JF (2017) Realization of red plasmon shifts up to ~900 nm by AgPd-tipping elongated Au nanocrystals. J Am Chem Soc 139(39):13837–13846

    CAS  PubMed  Google Scholar 

  25. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    CAS  Google Scholar 

  26. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9(4):1651–1658

    CAS  PubMed  Google Scholar 

  27. Zhang MS, Qi JW, Jiang L, Li YD, Qian J, Chen J, Chen ZQ, Sun Q, Xu JJ (2018) Screened bonding, antibonding and charge transfer plasmon modes in conductively connected nanorod heterodimer. J Opt 20(2):025001

    Google Scholar 

  28. Ding SY, You EM, Tian ZW, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46(13):4042–4076

    CAS  PubMed  Google Scholar 

  29. Devaraj V, Choi J, Kim CS, Oh JW, Hwang YH (2018) Numerical analysis of nanogap effects in metallic nano-disk and nano-sphere dimers: high near-field enhancement with large gap sizes. J Korean Phys Soc 72(5):599–603

    CAS  Google Scholar 

  30. Woo KC, Shao L, Chen HJ, Liang Y, Wang JF, Lin HQ (2011) Universal scaling and fano resonance in the plasmon coupling between gold nanorods. ACS Nano 5(7):5976–5986

    CAS  PubMed  Google Scholar 

  31. Tabor C, Murali R, Mahmoud M, El-Sayed MA (2009) On the use of plasmonic nanoparticle pairs as a plasmon ruler: The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A 113(10):1946–1953

    CAS  PubMed  Google Scholar 

  32. Cao PF, Chen H, Liang MY, Dou J, Cheng L (2019) New coupling mechanism of titanium nitride nanosphere dimers at short separation distances. Nanotechnology 30(33)

  33. Saison-Francioso O, Leveque G, Boukherroub R, Szunerits S, Akjouj A (2015) Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study. J Phys Chem C 119(51):28551–28559

    CAS  Google Scholar 

  34. Du CL, Peng S, Yang WC, Shi DN (2017) Plasmonic coupling effects on the refractive index sensitivities of plane Au-nanosphere-cluster sensors. Plasmonics 13(5):1729–1734

    Google Scholar 

  35. Chen CD, Cheng SF, Chau L, Wang CRC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22(6):926–932

    CAS  PubMed  Google Scholar 

  36. Hooshmand N, Mousavi HS, Panikkanvalappil SR, Adibi A, El-Sayed MA (2017) High-sensitivity molecular sensing using plasmonic nanocube chains in classical and quantum coupling regimes. Nano Today 17:14–22

    CAS  Google Scholar 

  37. Wang JQ, Fan CZ, He JN, Ding P, Liang EJ, Xue QZ (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21(2):2236–2244

    PubMed  Google Scholar 

  38. Ross BM, Lee LP (2009) Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles. Opt Lett 34(7):896–898

    CAS  PubMed  Google Scholar 

  39. Lu Y, Yang Q, Du GQ, Chen F, Wu YM, Ou Y, Si JH, Hou X (2015) Analysis of asymmetric dipoles interacting in heterogeneous metal nanorod dimers. Plasmonics 10(6):1325–1330

    CAS  Google Scholar 

  40. Du GQ, Yang Q, Chen F, Lu Y, Wu YM, Ou Y, Hou X (2015) Tuning near-field enhancements on an off-resonance nanorod dimer via temporally shaped femtosecond laser. J Phys D: Appl Phys 48(43):435102

    Google Scholar 

  41. Ding P, Liang EJ, Cai GW, Hu WQ, Fan CZ, Xue QZ (2011) Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterisls. J Opt 13(07):075005

    Google Scholar 

  42. Lin KQ, Yi J, Hu S, Liu BJ, Liu JY, Wang X, Ren B (2016) Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J Phys Chem C 120(37):20806–20813

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. NS2016074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoLing Du.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Du, C., Chen, Y. et al. Enhanced RI Sensitivity and SERS Performances of Individual Au Nanobipyramid Dimers. Plasmonics 16, 485–491 (2021). https://doi.org/10.1007/s11468-020-01302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01302-8

Keywords

Navigation