Skip to main content

Advertisement

Log in

Identification and Fine Mapping of a Major QTL, TT1-2, That Plays Significant Roles in Regulating Heat Tolerance in Rice

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Global warming threatens many aspects of human life, including a reduction in crop yields, and breeding heat-tolerant crops is a fundamental way to help address this challenge. As food for more than half of the global population, rice (Oryza sativa) has always been a popular research material in plant science. Breeding heat-tolerant rice using genes affording thermotolerance is a fundamental way to address this challenge. In this study, a major QTL, TT1-2, was found to regulate heat tolerance in rice; this QTL was controlled by a single dominant gene. Using F2:3 populations, we narrowed TT1-2 to a 26.0-kb region containing three putative genes, one of which encodes an α2 subunit of the 26S proteasome. This gene was considered the TT1-2 candidate, and the TT1 gene involved in rice heat tolerance was present at this locus. Further analysis showed that the amino acid sequence of the TT1-2 gene had one amino acid difference: arginine (R)-99 was changed to histidine (H), which leads to the formation of a normal alpha-helix. Moreover, through marker-assisted selection and conserved breeding selection, we developed a new male-sterile line, Zhehang 10A, which had a high outcrossing rate, good quality, and strong heat tolerance. We then used Zhehang 10A as the female parent and the restorer line Fuhui 1586 as the male parent and bred a new hybrid, Zhehangyou 1586, which showed high yield, good quality, and strong heat tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • El-Esawi MA, Alayafi AA (2019) Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes 10(1):56

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  Google Scholar 

  • Khan S, Anwar SM, Ashraf Y et al (2019) Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8(11):508

    Article  CAS  Google Scholar 

  • Kilasi NL, Singh J, Vallejos CE et al (2018) Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci 9:1578

    Article  Google Scholar 

  • Lawas LMF, Xia L, Erban A et al (2019) Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. GigaScience 8:1–21

    Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Article  CAS  Google Scholar 

  • Liu JP, Zhang CC, Wei CC, Liu X, Wang M, Yu F, Xie Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  Google Scholar 

  • Lyman NB, Jagadish KSV, Nalley LL, Dixon BL, Siebenmorgen T (2013) Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS One 8:e72157

    Article  CAS  Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  Google Scholar 

  • Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2013) Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat tolerant rice cultivar Genkitsukushi. J Plant Physiol 170(18):1579–1584

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  Google Scholar 

  • Panaud O, Chen X, Mccouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • Ps S, Sv AM, Prakash C et al (2017) High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice 10:28

    Article  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions1. Plant Physiol 136:2734–2746

    Article  CAS  Google Scholar 

  • Sato H, Todaka D, Kudo M (2016) The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J 14:1756–1767

    Article  CAS  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:66

    Article  CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  Google Scholar 

  • Trnka M, Rötter RP, Ruiz-Ramos M (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643

    Article  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, Zhang GQ (2006) Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 49:476–484

    Article  CAS  Google Scholar 

  • Xu JJ, Zhao Q, Du P et al (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 24:656

    Article  Google Scholar 

  • Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF (2017) Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul 83:313–323

    Article  CAS  Google Scholar 

  • Zhao L, Lei J, Huang Y, Zhu S, Chen H, Huang R, Peng Z, Tu Q, Shen X, Yan S (2016) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66(3):358–366

    Article  Google Scholar 

Download references

Acknowledgments

We thank American Journal Experts for providing professional editing services.

Funding

This work was supported by the National Keypoint Research and Invention Program of the Thirteenth (No. 2017YFD0300102), Special Fund for Agro-scientific Research in the Public Interest of Fujian Province (No. 2020R11010016-3), Youth Technology Innovation Team of Fujian Academy of Agricultural Sciences (No. STIT2017-3-3), Fujian Provincial Natural Science Foundation of China (No. 2019J01011040), and General Project of Fujian Academy of Agricultural Sciences (No. A2017-13).

Author information

Authors and Affiliations

Authors

Contributions

CY drafted the manuscript. CY, DY, GZ and HX contributed to the data analysis. DY and CY participated in the design of the study and the interpretation of the results and wrote and edited the manuscript.

Corresponding author

Correspondence to Dewei Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

A major QTL, TT1-2, was found to regulate heat tolerance in rice, and a single amino acid difference in the TT1-2 gene could affect the formation of a normal alpha-helix. A new hybrid combination, Zhehangyou 1586, was bred using a developed molecular marker linked to TT1-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Zhan, G., Hong, X. et al. Identification and Fine Mapping of a Major QTL, TT1-2, That Plays Significant Roles in Regulating Heat Tolerance in Rice. Plant Mol Biol Rep 39, 376–385 (2021). https://doi.org/10.1007/s11105-020-01256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01256-5

Keywords

Navigation