Skip to main content

Advertisement

Log in

Large-scale disease patterns explained by climatic seasonality and host traits

  • Ecosystem ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding factors affecting the distribution of vector-borne diseases in space and across species is of prime importance to conservation ecologists. Identifying the underlying patterns of disease requires a perspective encompassing large spatial scales. However, few studies have investigated disease ecology from a macroecological perspective. Hence, we use a global disease database to uncover worldwide infection patterns using avian malaria (Plasmodium) as a model for vector-borne disease transmission. Using data on 678 bird species from 442 locations, we show that environmental variables likely to synchronize bird and vector abundance are the key factors dictating infection risk for birds. Moreover, direct effects of host traits on exposure risk as well as potential trade-offs in resource allocation were also shown to affect disease susceptibility, with larger bird species being more prone to infection. Our results suggest that considering evolutionary strategies and factors influencing spatial overlap between hosts and vectors is crucial for understanding worldwide patterns of disease transmission success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data accessibility statement

Data will be deposited in public repository (Dryad or others) upon acceptance of the article.

References

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamic of infectious diseases. Ecol Lett 9:467–484

    PubMed  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions: I. Regulatory processes. J Anim Ecol 47:219–247

    Google Scholar 

  • Atkinson CT, Lapointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63

    PubMed  Google Scholar 

  • Atkinson CT, Samuel MD (2010) Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‘Apapane Himatione sanguinea. J Avian Biol 41:357–366

    Google Scholar 

  • Banerjee S, Perelson AS, Moses M (2017) Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response. J R Soc Interface 14:20170479

    PubMed  PubMed Central  Google Scholar 

  • Barbour AG, Bunikis J, Fish D, Hanincová K (2015) Association between body size and reservoir competence of mammals bearing Borrelia burgdorferi at an endemic site in the northeastern United States. Parasites Vectors 8:299

    PubMed  PubMed Central  Google Scholar 

  • Barrow LN, McNew SM, Mitchell N, Galen SP, Lutz HL, Skeen H et al (2019) Deeply conserved susceptibility in a multi-host, multi-parasite system. Ecol Lett 22:987–998

    PubMed  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related heamosporidians in avian hosts based on mitochondrial cytochrome b lineage. Mol Ecol Resour 9:1353–1358

    PubMed  Google Scholar 

  • Bivand R, Keitt T and Rowlingson B (2020) rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5-8. https://CRAN.R-project.org/package=rgdal

  • Brooke ML, Hanley S, Laughlin SB (1999) The scaling of eye size with body mass in birds. Proc. Biol Sci 266:405–412

    PubMed Central  Google Scholar 

  • Bürkner PC (2017) brms: an R package for Bayesian multilevel models using STAN. J Stat Softw 80:1–28

    Google Scholar 

  • Day JF (2001) Predicting St. Louis encephalitis virus epidemics: lessons from recent, and not so recent, outbreaks. Annu Rev Entomol 46:111–138

    CAS  PubMed  Google Scholar 

  • Deerenberg C, Arpanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc Royal Soc B 26:1021–1029

    Google Scholar 

  • Didan K, Barreto A (2016) NASA MEaSUREs Vegetation Index and Phenology (VIP) Phenology NDVI Yearly Global 0.05Deg CMG. In: NASA EOSDIS L. Process. DAAC

  • Dormann C, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 35:1–20

    Google Scholar 

  • Downs CJ, Schoenle LA, Han BA, Harrison JF, Martin LB (2019) Scaling of host competence. Trends Parasitol 35:182–192

    PubMed  Google Scholar 

  • Duffield KR, Bowers EK, Sakaluk SK, Sadd BM (2017) A dynamic threshold model for terminal investment. Behav Ecol Sociobiol 71:185–202

    PubMed  PubMed Central  Google Scholar 

  • Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeir CA, Hall SR (2012) Ecological context influences epidemic size and parasite-driven evolution. Science 335:1636–1638

    CAS  PubMed  Google Scholar 

  • Edman JD, Scott TW (1987) Host defensive behaviour and the feeding success of mosquitoes. J Insect Sci 8:617–622

    Google Scholar 

  • Ellison AR, Tunstall T, DiRenzo GV, Hughey MC, Rebollar EA, Belden LK et al (2015) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol 7:286–298

    CAS  Google Scholar 

  • Fecchio A, Wells K, Bell JAS, Tkach VV, Lutz HL, Weckstein JD et al (2019a) Climate variation influences host specificity in avian malaria parasites. Lett, Ecol. https://doi.org/10.1111/ele.13215

    Book  Google Scholar 

  • Fecchio A, Bell JA, Bosholn M, Vaughan JA, Tkach VV et al (2019b) An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J Animal Ecol. https://doi.org/10.1111/1365-2656.13117

    Article  Google Scholar 

  • Ferraguti M, de la Puente JM, Roiz D, Ruiz S, Soriguer R, Figuerola J (2016) Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 6:29002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeland WJ (1983) Parasites and the coexistence of animal host species. Am Nat 121:223–236

    Google Scholar 

  • Galardo AKR, Zimmerman RH, Loubinos LP, Young LJ, Galardo CD, Arruda M et al (2009) Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapi River, Amapi, Brazil. Med Vet Entomol 23:335–349

    CAS  PubMed  Google Scholar 

  • Giraudoux P, Craig PS, Delattre P, Bao G, Bartholomot B, Harraga S et al (2003) Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasitology 127:121–131

    Google Scholar 

  • Greenberg JA and Mattiuzzi M (2020) gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2

  • Gregory RD, Blackburn TM (1991) Parasite prevalence and host sample size. Parasitol. Today 7:316–318

    CAS  PubMed  Google Scholar 

  • Grimaldi WW, Seddon PJ, Lyver PO, Nakagawa S, Tompkins DM (2015) Infectious diseases of Antarctic penguins: current status and future threats. Polar Biol 38:591–606

    Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    CAS  PubMed  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Google Scholar 

  • Hijmans RJ and van Etten J (2019) raster: geographic analysis and modeling with raster data. Rpackage version 2.9-5

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hin V, de Roos AM (2019) Evolution of size-dependent intraspecific competition predicts body size scaling of metabolic rate. Funct Ecol 33:479–490

    PubMed  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    CAS  PubMed  Google Scholar 

  • Holt RD, Bonsall MB (2017) Apparent competition. Annu Rev Ecol Evol Syst 48:447–471

    Google Scholar 

  • Hudson P, Greenman J (1998) Competition mediated by parasite: biological and theoritical progress. Trends Ecol Evol 13:387–390

    CAS  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol Rev 89:123–134

    PubMed  Google Scholar 

  • Karr JR (1976) Seasonality, resource availability, and community diversity in tropical bird communities. Am Nat 100:973–994

    Google Scholar 

  • Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. Proc Royal Soc B 266:859–867

    CAS  Google Scholar 

  • Keith SA, Webb T, Böhning-Gaese K, Conolly SA, Dulvy NK, Eigenbrod F et al (2012) What is macroecology? Biol Lett 8:904–906

    PubMed  PubMed Central  Google Scholar 

  • Klowden MJ, Zweibel LJ (2005) Vector olfaction and behavior. In: Marquardt WC (ed) Biology of disease vectors, 2nd edn. Elsevier Academic Press, San Diego, pp 277–287

    Google Scholar 

  • LaPointe DA, Goff ML, Atkinson CT (2010) Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawaii. J Parasitol 96:318–324

    PubMed  Google Scholar 

  • Lindgren E, Tälleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau C, Harrigan RJ, Bichet C, Julliard R, Garnier S, Lendvai AZ et al (2013) Prediction of avian Plasmodium expansion under climate change. Sci Rep. https://doi.org/10.1038/srep01126

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin TE, Møller AP, Merino S, Clobert J (2001) Does clutch size evolve in response to parasites and immunocompetence? PNAS 98:2071–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JL, Robertson A, Silk MJ (2017) Wildlife disease ecology from the individual to the population: insights from a long-term study of a naturally infected European badger population. J Animal Ecol 87:101–112

    Google Scholar 

  • Medeiros MCI, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector host-encounter rate determines the host range of avian Plasmodium parasites. Proc. Royal Soc. B. 280:20122947

    Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural population of mammals. Science 297:2015–2018

    CAS  PubMed  Google Scholar 

  • Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Morgan Ernest SK (2015) An amniote life-history database to perform comparative analysis with birds, mammals, and reptiles. Ecology 96:3109–3109

    Google Scholar 

  • Ogden NH, Maarouf A, Bigras-Poulin IK, Lindsay M, Morshed MG et al (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36:63–70

    CAS  PubMed  Google Scholar 

  • Owens IPF, Wilson K (1999) Immunocompetence: a neglected life history trait or conspicuous red herring? Trends Ecol Evol 14:170–172

    Google Scholar 

  • Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Google Scholar 

  • Pascual M, Dobson AP, Bouma MJ (2009) Underestimating malaria risk under variable temperatures. PNAS 106:13645–13646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pebesma EJ and Bivand RS (2005) Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/

  • Peters RH (1983) The ecological implication of body size. Cambridge University Press, Cambridge, p 329

    Google Scholar 

  • Podmokla E, Dubiec A, Drobniak SM, Arct A, Gustafsson A, Chicon M (2014) Avian malaria is associated with increased reproductive investment in the blue tit. J Avian Biol 4:219–224

    Google Scholar 

  • Pulgarin-R PC, Gomez JP, Robinson S, Ricklefs RE, Cadena CD (2018) Host species, and not environment, predicts variation in blood parasite prevalence, distribution, and diversity along a humidity gradient in northern South America. Ecol Evol 8:3800–3814

    PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Reeves WC, Hardy JL, Reisen WK, Milby MM (1994) Potential effect of global warming on mosquito-borne arboviruses. J Med Entomol 31:323–332

    CAS  PubMed  Google Scholar 

  • Reisen WK (2010) Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55:461–483

    CAS  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Google Scholar 

  • Revelle W (2018) psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston

    Google Scholar 

  • Santiago-Alarcon D, MacGregor-Fors I, Kühnert K, Segelbacher G and Schaefer HM (2015) Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosyst. https://doi.org/10.1007/s11252-015-0494-0

  • Scheuerlein A, Ricklefs RE (2004) Prevalence of blood parasites in European passeriform birds. Proc Royal Soc B 271:1363–1370

    Google Scholar 

  • Scott ME (1988) The impact of infection and disease on animal populations: implications for conservation biology. Conserv Biol 2:40–56

    Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite prevalence defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    CAS  PubMed  Google Scholar 

  • Shrag SJ, Wiener P (1995) Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol Evol 10:319–324

    Google Scholar 

  • Smith DL, Lucey B, Waller LA, Childs JE, Real LA (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. PNAS 99:3668–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens PR, Altizer S, Smith KF, Aguirre AA, Brown JH, Budischak SA et al (2016) The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol Lett 19:1159–1171

    PubMed  Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    CAS  PubMed  Google Scholar 

  • Tompkins DM, Poulin R (2006) Parasites and biological invasions. Biol. Invasions New Zealand 186:67–84

    Google Scholar 

  • Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38

    PubMed  Google Scholar 

  • Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol 31:149–159

    PubMed  Google Scholar 

  • Tonkin JD, Bogan MT, Bonada N, Rios-Touma B, Lytle DA (2017) Seasonality and predictability shape temporal species diversity. Ecology 98:1201–1216

    PubMed  Google Scholar 

  • Torr SJ, Mangwiro TN, Hall DR (2006) The effects of host physiology on the attraction of tsetse (Diptera: Glossinidae) and Stomoxys (Diptera: Muscidae) to cattle. Bull Entomol Res 96:71–84

    CAS  PubMed  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, New York, p 934

    Google Scholar 

  • Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput 27:1413–1432

    Google Scholar 

  • Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. PNAS 94:338–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • World health organisation (2017) Vector-borne diseases. Available at: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed Aug 08, 2019

  • Yao Y, Vehtari A, Simpson D, Gelman A (2018) Using stacking to average Bayesian predictive distributions. Bayesian Anal 13:917–1007

    Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:9–22

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, p 574

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lucas Deschamps and Jean-François Doherty for their comments on an earlier version of the manuscript. We would also like to thank all the authors who forwarded original datasets to help complete the analysis, especially Alan Fecchio and Erika Martins Braga. A. Filion is supported by a University of Otago Doctoral Scholarship, A. Eriksson by a CAPES Grant (process number 88881.187634/2018-01) and F. Jorge by a grant from the Marsden Fund (to R. Poulin).

Author information

Authors and Affiliations

Authors

Contributions

RP conceived the idea. AF, AE, CNN, FJ and RP designed the study. AF collected the data and wrote the first draft of the manuscript. All authors were involved in data analyses, contributed critically to the drafts, and gave final approval for publication.

Corresponding author

Correspondence to Antoine Filion.

Additional information

Communicated by Indrikis Krams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (DOCX 4859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filion, A., Eriksson, A., Jorge, F. et al. Large-scale disease patterns explained by climatic seasonality and host traits. Oecologia 194, 723–733 (2020). https://doi.org/10.1007/s00442-020-04782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04782-x

Keywords

Navigation